scispace - formally typeset
Search or ask a question
Author

Issa Batarseh

Bio: Issa Batarseh is an academic researcher from University of Central Florida. The author has contributed to research in topics: Converters & Forward converter. The author has an hindex of 50, co-authored 458 publications receiving 10310 citations. Previous affiliations of Issa Batarseh include University of Illinois at Urbana–Champaign & Princess Sumaya University for Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a thorough study for different power decoupling techniques in single-phase microinverters for grid-tie PV applications is presented, compared and scrutinized in scope of the size of decoupled capacitor, efficiency, and control complexity.
Abstract: The reliability of the microinverter is a very important feature that will determine the reliability of the ac-module photovoltaic (PV) system. Recently, many topologies and techniques have been proposed to improve its reliability. This paper presents a thorough study for different power decoupling techniques in single-phase microinverters for grid-tie PV applications. These power decoupling techniques are categorized into three groups in terms of the decoupling capacitor locations: 1) PV-side decoupling; 2) dc-link decoupling; and 3) ac-side decoupling. Various techniques and topologies are presented, compared, and scrutinized in scope of the size of decoupling capacitor, efficiency, and control complexity. Also, a systematic performance comparison is presented for potential power decoupling topologies and techniques.

458 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the control strategy and power management for an integrated three-port converter, which interfaces one solar input port, one bidirectional battery port, and an isolated output port.
Abstract: This paper presents the control strategy and power management for an integrated three-port converter, which interfaces one solar input port, one bidirectional battery port, and an isolated output port. Multimode operations and multiloop designs are vital for such multiport converters. However, control design is difficult for a multiport converter to achieve multifunctional power management because of various cross-coupled control loops. Since there are various modes of operation, it is challenging to define different modes and to further implement autonomous mode transition based on the energy state of the three power ports. A competitive method is used to realize smooth and seamless mode transition. Multiport converter has plenty of interacting control loops due to integrated power trains. It is difficult to design close-loop controls without proper decoupling method. A detailed approach is provided utilizing state-space averaging method to obtain the converter model under different modes of operation, and then a decoupling network is introduced to allow separate controller designs. Simulation and experimental results verify the converter control design and power management during various operational modes.

364 citations

Journal ArticleDOI
TL;DR: In this article, a generalized mode analysis is presented that provides highly accurate prediction on resonant current and voltage behavior and dc gain characteristic, and an approximation method is developed to estimate the peak gain point, which is useful in LLC design.
Abstract: With the advantage of achieving zero voltage switching for a wide input voltage range, the LLC resonant topology has become increasingly popular for use in high power density and high-efficiency power converter applications. However, when the LLC converter is applied to wide input voltage range applications, the widely used fundamental harmonic approximation is incapable of guiding the design due to its inaccuracy. Thus an accurate LLC converter model is desired. In this paper, a generalized mode analysis is presented that provides highly accurate prediction on resonant current and voltage behavior and dc gain characteristic. Also, because operation modes are affected by load, frequency, and gain conditions, the boundaries and distribution of modes are discussed and illustrated. Based on the mode analysis, an approximation method is developed to estimate the peak gain point, which is useful in LLC design. This approximation demonstrates high accuracy within the simulation results. An experimental prototype is built to verify the analysis.

337 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an introduction, review, and framework for the category of high-step-up coupled-inductor boost converters, which are categorized into five groups according to the major topological features.
Abstract: High-step-up, high-efficiency, and cost-effective dc–dc converters, serving as an interfacing cell to boost the low-voltage output of renewable sources to the utility voltage level, are an important part in renewable energy systems. Over the past few years, there has been a substantial amount of studies devoted to high-step-up dc–dc converters. Among them, the category of coupled-inductor boost converters is widely researched and considered to be a promising solution for high-step-up applications. In this paper, these converters are categorized into five groups according to the major topological features. The derivation process, advantages, and disadvantages of these converters are systematically discussed, compared, and scrutinized. This paper aims to provide an introduction, review, and framework for the category of high-step-up coupled-inductor boost converters. General structures for the topologies are proposed to clarify the topological derivation process and to show potential gaps. Furthermore, challenges or directions are presented in this paper for deriving new topologies in this field.

325 citations

Journal ArticleDOI
TL;DR: In this paper, a modified LLC converter with two transformers in series, which has four operation configurations, covering the range of four times the minimum input voltage, is proposed to minimize the magnetizing current and thus minimize the conduction and core losses.
Abstract: This paper proposed a modified LLC converter with two transformers in series, which has four operation configurations, covering the range of four times the minimum input voltage. To optimize the proposed LLC converter in an attempt to achieve good efficiency, a numerical method is developed based on the LLC converter's steady-state equations. In order to minimize the magnetizing current and thus minimize the conduction and core losses, an optimal objective is proposed to find the maximum magnetizing inductance. An optimization procedure and a design example are given. A 250-W 210-V output prototype with input voltage ranging from 25 to 100 V is built to verify the developed numerical model and optimal design method. The dc gain obtained from experimental data agrees pretty well with that from the developed numerical model. Two conventional LLC converters are designed using fundamental harmonic approximation and the proposed optimal design, respectively, to make comparison with the proposed LLC converter and validate the proposed optimal design. Experimental results show that the proposed converter with proposed optimal design can achieve the peak efficiency up to 98%, while maintaining a very wide input voltage range.

280 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed in this paper, and at least 19 distinct methods have been introduced in the literature, with many variations on implementation.
Abstract: The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in PV power generation.

5,022 citations

Journal ArticleDOI
TL;DR: In this article, the perturb and observe (PO) algorithm is used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions.
Abstract: Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions. The issue of MPPT has been addressed in different ways in the literature but, especially for low-cost implementations, the perturb and observe (PO moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper it is shown that, in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such parameters is also carried out. Results of experimental measurements are in agreement with the predictions of theoretical analysis.

2,696 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: In this article, power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems.
Abstract: The global electrical energy consumption is rising and there is a steady increase of the demand on the power capacity, efficient production, distribution and utilization of energy. The traditional power systems are changing globally, a large number of dispersed generation (DG) units, including both renewable and nonrenewable energy sources such as wind turbines, photovoltaic (PV) generators, fuel cells, small hydro, wave generators, and gas/steam powered combined heat and power stations, are being integrated into power systems at the distribution level. Power electronics, the technology of efficiently processing electric power, play an essential part in the integration of the dispersed generation units for good efficiency and high performance of the power systems. This paper reviews the applications of power electronics in the integration of DG units, in particular, wind power, fuel cells and PV generators.

2,296 citations