scispace - formally typeset
Search or ask a question
Author

Italo Ferino

Bio: Italo Ferino is an academic researcher from University of Cagliari. The author has contributed to research in topics: Catalysis & Adsorption. The author has an hindex of 25, co-authored 80 publications receiving 1736 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the surface properties of the preconditioned materials were investigated for the photocatalytic degradation of phenol under UV-illumination using Raman spectroscopy and XPS, LEIS and 1H MAS-NMR.
Abstract: TiO2 materials prepared by sol–gel method and then impregnated with sulfuric acid and further calcined at different temperatures show high photon efficiencies for the photocatalytic degradation of phenol under UV-illumination. Best photocatalyst was obtained after calcination around 700 °C, giving specific activities (i.e. per m2) significantly higher than those exhibited by similarly prepared non-sulfated TiO2 or by pure Degussa P25. Structural analysis of these new materials by XRD, TG–DTG and Raman spectroscopy shows that once calcined at 700 °C the material was a well-crystallized, high surface area and sulfate-free 90% anatase. Surface characterization in this work by XPS, LEIS and 1H MAS-NMR confirms a complete loss of the sulfate and OH-groups, and a low XPS O/Ti-atomic ratio with the O(1s) peak shifted to higher binding energies (1.7 versus 2 ± 0.1 and 530.4 eV versus 529.8 eV, respectively, against the reference materials). This indicates the existence of oxygen vacancies, which give a broad band at 400–600 nm in the reflectance spectra. However, LEIS spectra show an O/Ti composition at the topmost exposed atomic surface layer similar to that of TiO2 reference materials. Adsorption microcalorimetry of pyridine gives a profile of acid sites quite similar to those found for reference anatase samples, what discards the presence of superacid sites as the origin of its enhanced UV-photoefficiency. A mechanism is proposed, on the basis of earlier results in the literature for acidic TiO2 surfaces, to explain the nature of these materials. We also try to correlate the contribution of the oxygen vacancies within the anatase sub-surface layers to the high photon UV-efficiency of the system and, likely, to an enhanced vis-photoactivity of these materials.

225 citations

Journal ArticleDOI
TL;DR: In this article, the combined use of calorimetric and catalytic methods for the investigation of the acid-base properties of oxide systems is discussed with reference to the authors' work on pure and doped zirconia samples, ceria-zirconias and cerialanthana solid solutions.
Abstract: The combined use of calorimetric and catalytic methods for the investigation of the acid-base properties of oxide systems is discussed with reference to the authors' work on pure and doped zirconia samples, ceria-zirconia and ceria-lanthana solid solutions. Adsorption microcalorimetry of ammonia and carbon dioxide had been used to characterize the samples, whose chemical and thermal history was taken into account. The catalytic behavior of these samples in the conversion of 4-methylpentan-2-ol, route to 4-methylpent-1-ene (starting product for the manufacture of polymers of superior technological properties), had also been studied. On the basis of the calorimetric data, a rationale for interpreting the data for the transformation of 4-methylpentan-2-ol is formulated, which takes into account the role of the concentration and strength of the sites in governing the competition among the various mechanisms for dehydration and dehydrogenation.

73 citations

Journal ArticleDOI
TL;DR: In this paper, an iron (III) carboxylate metal organic framework with MIL-100(Fe) was synthesized through a mechanochemical route, which was characterized by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy, thermal gravimetry, and adsorption microcalorimetry of ammonia.
Abstract: An iron (III) carboxylate Metal Organic Framework isostructural with MIL-100(Fe) was synthesized through a mechanochemical route. The material, rapidly obtained by liquid-assisted grinding at room temperature, was characterized by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy, thermal gravimetry, nitrogen physisorption and adsorption microcalorimetry of ammonia. For comparison, the features of a commercial iron trimesate produced via electrochemical route were investigated as well. The ball-milled sample showed better crystallinity, associated with good thermal stability, higher surface area and pore volume. The adsorption performance of both the ball-milled and commercial samples for the ambient-temperature removal of 4,6-dimethyldibenzothiophene (4,6-DMDBT) from 4,6-DMDBT)/n-heptane solutions simulating a diesel fuel was also investigated. The maximum adsorption capacity for the ball-milled sample resulted twice as big as that for the commercial one. An interpretation of the different adsorption behavior is proposed.

68 citations

Journal ArticleDOI
TL;DR: In this article, a heat-flow microcalorimeter of the Tian-Calvet type has been used to obtain information on the differential molar enthalpy of adsorption.
Abstract: Fundamentals of microcalorimetry are briefly reviewed. A heat-flow microcalorimeter of the Tian–Calvet type has been used to obtain information on the differential molar enthalpy of adsorption. Ammonia, pyridine, n-butylamine or CO2 and SO2 have been used to characterize the acid–base properties of several catalysts such as zeolites and oxides.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the title reaction has been studied on various HY-based catalysts using adsorption microcalorimetry and FTIR analysis, using pyridine as probe molecule.
Abstract: The title reaction has been studied on various HY-based catalysts. Surface acidity has been evaluated by adsorption microcalorimetry and FTIR analysis, using pyridine as probe molecule. Catalytic tests were carried out at 623 K and 40 bar in liquid phase, with decalin as solvent, in flow reactor. Isopropylation is accompanied by oligomerisation/cracking of the reactant alcohol, cracking of the solvent, isomerization of the products of the main reaction. Pore filling by coke is fast for non-dealuminated HY, where naphthalene conversion remains high due to the occurrence of transalkylation between polyisopropylnaphthalenes trapped in the pores and naphthalene; this does not occur on dealuminated HY, owing to the low density of the acid sites and the presence of a secondary mesoporous system which allows easy diffusion of the reaction products in the zeolite pores.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد لماش VB و ) رگید اب لاقتنا VB (CO2) .
Abstract: UV-Visible ار راد ن .د TiO2 ( تیفرظ راون مان هب نورتکلا یاراد یژرنا زارت لماش VB و ) رگید زارت ی یژرنا اب ( ییاناسر راون مان هب نورتکلا زا یلاخ و رتلااب VB یم ) .دشاب ت ود نیا نیب یژرنا توافت یژرنا فاکش زار ، پگ دناب هدیمان یم .دوش هک ینامز زا نورتکلا لاقتنا VB هب VB یم ماجنا دریگ ، TiO2 اب ودح یژرنا بذج د ev 2 / 3 ، نورتکلا تفج کی دیلوت یم هرفح .دیامن و نورتکلا هرفح ی نا اب هدش دیلوت یم کرتشم حطس هب لاقت ثعاب دناوت شنکاو ماجنا اه یی ددرگ . TiO2 دربراک ،دراد یدایز یاه هلمج زا یم ناوت اوه یگدولآ هیفصت یارب (CO2) و بآ و ... نآ زا هدافتسا درک .

2,055 citations

Journal ArticleDOI
TL;DR: Using R-Hydroxy Stannanes as a Model for a Methylenation Reaction and Conclusions and Future Prospects are presented.
Abstract: 6.4. Polyynes 3123 6.5. Using R-Hydroxy Stannanes 3124 6.6. Using the Hurtley Reaction 3124 6.7. Using a Methylenation Reaction 3125 7. Conclusions and Future Prospects 3125 8. Uncommon Abbreviations 3125 9. Acknowledgments 3125 10. Note Added in Proof 3125 11. References 3126 * Authorstowhomcorrespondenceshouldbeaddressed(evano@chimie.uvsq.fr, nicolas.blanchard@uha.fr). † Université de Versailles Saint Quentin en Yvelines. ‡ Université de Haute-Alsace. Chem. Rev. 2008, 108, 3054–3131 3054

1,789 citations

Journal ArticleDOI
TL;DR: The field of surface science provides a unique approach to understand bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis as mentioned in this paper, including photon absorption, charge transport and trapping, electron transfer dynamics, adsorbed state, mechanisms, poisons and promoters, and phase and form.
Abstract: The field of surface science provides a unique approach to understanding bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis. This review highlights, from a surface science perspective, recent literature that provides molecular-level insights into photon-initiated events occurring at TiO2 surfaces. Seven key scientific issues are identified in the organization of this review. These are: (1) photon absorption, (2) charge transport and trapping, (3) electron transfer dynamics, (4) the adsorbed state, (5) mechanisms, (6) poisons and promoters, and (7) phase and form. This review ends with a brief examination of several chemical processes (such as water splitting) in which TiO2 photocatalysis has made significant contributions in the literature.

1,768 citations

Journal ArticleDOI
TL;DR: The chemistry of copper is extremely rich because it can easily access Cu0, CuI, CuII, and CuIII oxidation states allowing it to act through one-electron or two-Electron processes, which feature confer a remarkably broad range of activities allowing copper to catalyze the oxidation and oxidative union of many substrates.
Abstract: The chemistry of copper is extremely rich because it can easily access Cu0, CuI, CuII, and CuIII oxidation states allowing it to act through one-electron or two-electron processes. As a result, both radical pathways and powerful two-electron bond forming pathways via organmetallic intermediates, similar to those of palladium, can occur. In addition, the different oxidation states of copper associate well with a large number of different functional groups via Lewis acid interactions or π-coordination. In total, these feature confer a remarkably broad range of activities allowing copper to catalyze the oxidation and oxidative union of many substrates. Oxygen is a highly atom economical, environmentally benign, and abundant oxidant, which makes it ideal in many ways.1 The high activation energies in the reactions of oxygen require that catalysts be employed.2 In combination with molecular oxygen, the chemistry of copper catalysis increases exponentially since oxygen can act as either a sink for electrons (oxidase activity) and/or as a source of oxygen atoms that are incorporated into the product (oxygenase activity). The oxidation of copper with oxygen is a facile process allowing catalytic turnover in net oxidative processes and ready access to the higher CuIII oxidation state, which enables a range of powerful transformations including two-electron reductive elimination to CuI. Molecular oxygen is also not hampered by toxic byproducts, being either reduced to water, occasionally via H2O2 (oxidase activity) or incorporated into the target structure with high atom economy (oxygenase activity). Such oxidations using oxygen or air (21% oxygen) have been employed safely in numerous commodity chemical continuous and batch processes.3 However, batch reactors employing volatile hydrocarbon solvents require that oxygen concentrations be kept low in the head space (typically <5–11%) to avoid flammable mixtures, which can limit the oxygen concentration in the reaction mixture.4,5,6 A number of alternate approaches have been developed allowing oxidation chemistry to be used safely across a broader array of conditions. For example, use of carbon dioxide instead of nitrogen as a diluent leads to reduced flammability.5 Alternately, water can be added to moderate the flammability allowing even pure oxygen to be employed.6 New reactor designs also allow pure oxygen to be used instead of diluted oxygen by maintaining gas bubbles in the solvent, which greatly improves reaction rates and prevents the build up of higher concentrations of oxygen in the head space.4a,7 Supercritical carbon dioxide has been found to be advantageous as a solvent due its chemical inertness towards oxidizing agents and its complete miscibility with oxygen or air over a wide range of temperatures.8 An number of flow technologies9 including flow reactors,10 capillary flow reactors,11 microchannel/microstructure structure reactors,12 and membrane reactors13 limit the amount of or afford separation of hydrocarbon/oxygen vapor phase thereby reducing the potential for explosions. Enzymatic oxidizing systems based upon copper that exploit the many advantages and unique aspects of copper as a catalyst and oxygen as an oxidant as described in the preceding paragraphs are well known. They represent a powerful set of catalysts able to direct beautiful redox chemistry in a highly site-selective and stereoselective manner on simple as well as highly functionalized molecules. This ability has inspired organic chemists to discover small molecule catalysts that can emulate such processes. In addition, copper has been recognized as a powerful catalyst in several industrial processes (e.g. phenol polymerization, Glaser-Hay alkyne coupling) stimulating the study of the fundamental reaction steps and the organometallic copper intermediates. These studies have inspiried the development of nonenzymatic copper catalysts. For these reasons, the study of copper catalysis using molecular oxygen has undergone explosive growth, from 30 citations per year in the 1980s to over 300 citations per year in the 2000s. A number of elegant reviews on the subject of catalytic copper oxidation chemistry have appeared. Most recently, reviews provide selected coverage of copper catalysts14 or a discussion of their use in the aerobic functionalization of C–H bonds.15 Other recent reviews cover copper and other metal catalysts with a range of oxidants, including oxygen, but several reaction types are not covered.16 Several other works provide a valuable overview of earlier efforts in the field.17 This review comprehensively covers copper catalyzed oxidation chemistry using oxygen as the oxidant up through 2011. Stoichiometric reactions with copper are discussed, as necessary, to put the development of the catalytic processes in context. Mixed metal systems utilizing copper, such as palladium catalyzed Wacker processes, are not included here. Decomposition reactions involving copper/oxygen and model systems of copper enzymes are not discussed exhaustively. To facilitate analysis of the reactions under discussion, the current mechanistic hypothesis is provided for each reaction. As our understanding of the basic chemical steps involving copper improve, it is expected that many of these mechanisms will evolve accordingly.

1,326 citations

Journal ArticleDOI
TL;DR: This Review systematically documents the progresses and developments made in the understanding and design of heterogeneous catalysts for VOC oxidation over the past two decades and addresses in detail how catalytic performance is often drastically affected by the pollutant sources and reaction conditions.
Abstract: It is well known that urbanization and industrialization have resulted in the rapidly increasing emissions of volatile organic compounds (VOCs), which are a major contributor to the formation of secondary pollutants (e.g., tropospheric ozone, PAN (peroxyacetyl nitrate), and secondary organic aerosols) and photochemical smog. The emission of these pollutants has led to a large decline in air quality in numerous regions around the world, which has ultimately led to concerns regarding their impact on human health and general well-being. Catalytic oxidation is regarded as one of the most promising strategies for VOC removal from industrial waste streams. This Review systematically documents the progresses and developments made in the understanding and design of heterogeneous catalysts for VOC oxidation over the past two decades. It addresses in detail how catalytic performance is often drastically affected by the pollutant sources and reaction conditions. It also highlights the primary routes for catalyst deactivation and discusses protocols for their subsequent reactivation. Kinetic models and proposed oxidation mechanisms for representative VOCs are also provided. Typical catalytic reactors and oxidizers for industrial VOC destruction are further discussed. We believe that this Review will provide a great foundation and reference point for future design and development in this field.

1,074 citations