scispace - formally typeset
Search or ask a question
Author

Iulia Turc

Bio: Iulia Turc is an academic researcher from Google. The author has contributed to research in topics: Initialization & Computer science. The author has an hindex of 4, co-authored 7 publications receiving 360 citations.

Papers
More filters
Posted Content
TL;DR: It is shown that pre-training remains important in the context of smaller architectures, and fine-tuning pre-trained compact models can be competitive to more elaborate methods proposed in concurrent work.
Abstract: Recent developments in natural language representations have been accompanied by large and expensive models that leverage vast amounts of general-domain text through self-supervised pre-training. Due to the cost of applying such models to down-stream tasks, several model compression techniques on pre-trained language representations have been proposed (Sun et al., 2019; Sanh, 2019). However, surprisingly, the simple baseline of just pre-training and fine-tuning compact models has been overlooked. In this paper, we first show that pre-training remains important in the context of smaller architectures, and fine-tuning pre-trained compact models can be competitive to more elaborate methods proposed in concurrent work. Starting with pre-trained compact models, we then explore transferring task knowledge from large fine-tuned models through standard knowledge distillation. The resulting simple, yet effective and general algorithm, Pre-trained Distillation, brings further improvements. Through extensive experiments, we more generally explore the interaction between pre-training and distillation under two variables that have been under-studied: model size and properties of unlabeled task data. One surprising observation is that they have a compound effect even when sequentially applied on the same data. To accelerate future research, we will make our 24 pre-trained miniature BERT models publicly available.

422 citations

Posted Content
23 Aug 2019
TL;DR: It is observed that applying language model pre-training to students unlocks their generalization potential, surprisingly even for very compact networks.
Abstract: Recent developments in NLP have been accompanied by large, expensive models. Knowledge distillation is the standard method to realize these gains in applications with limited resources: a compact student is trained to recover the outputs of a powerful teacher. While most prior work investigates student architectures and transfer techniques, we focus on an often-neglected aspect---student initialization. We argue that a random starting point hinders students from fully leveraging the teacher expertise, even in the presence of a large transfer set. We observe that applying language model pre-training to students unlocks their generalization potential, surprisingly even for very compact networks. We conduct experiments on 4 NLP tasks and 24 sizes of Transformer-based students; for sentiment classification on the Amazon Book Reviews dataset, pre-training boosts size reduction and TPU speed-up from 3.1x/1.25x to 31x/16x. Extensive ablation studies dissect the interaction between pre-training and distillation, revealing a compound effect even when they are applied on the same unlabeled dataset.

159 citations

Posted Content
TL;DR: CANINE as discussed by the authors is a neural encoder that operates directly on character sequences, without explicit tokenization or vocabulary, and a pre-training strategy that operates either directly on characters or optionally uses subwords as a soft inductive bias.
Abstract: Pipelined NLP systems have largely been superseded by end-to-end neural modeling, yet nearly all commonly-used models still require an explicit tokenization step. While recent tokenization approaches based on data-derived subword lexicons are less brittle than manually engineered tokenizers, these techniques are not equally suited to all languages, and the use of any fixed vocabulary may limit a model's ability to adapt. In this paper, we present CANINE, a neural encoder that operates directly on character sequences, without explicit tokenization or vocabulary, and a pre-training strategy that operates either directly on characters or optionally uses subwords as a soft inductive bias. To use its finer-grained input effectively and efficiently, CANINE combines downsampling, which reduces the input sequence length, with a deep transformer stack, which encodes context. CANINE outperforms a comparable mBERT model by 2.8 F1 on TyDi QA, a challenging multilingual benchmark, despite having 28% fewer model parameters.

36 citations

Journal ArticleDOI
TL;DR: This work presents Pix2Struct, a pretrained image-to-text model for purely visual language understanding, which can be used on tasks containing visually-situated language, and shows that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains: documents, illustrations, user interfaces, and natural images.
Abstract: Visually-situated language is ubiquitous -- sources range from textbooks with diagrams to web pages with images and tables, to mobile apps with buttons and forms. Perhaps due to this diversity, previous work has typically relied on domain-specific recipes with limited sharing of the underlying data, model architectures, and objectives. We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding, which can be finetuned on tasks containing visually-situated language. Pix2Struct is pretrained by learning to parse masked screenshots of web pages into simplified HTML. The web, with its richness of visual elements cleanly reflected in the HTML structure, provides a large source of pretraining data well suited to the diversity of downstream tasks. Intuitively, this objective subsumes common pretraining signals such as OCR, language modeling, image captioning. In addition to the novel pretraining strategy, we introduce a variable-resolution input representation and a more flexible integration of language and vision inputs, where language prompts such as questions are rendered directly on top of the input image. For the first time, we show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains: documents, illustrations, user interfaces, and natural images.

31 citations

Posted Content
TL;DR: The authors introduce MultiBERTs, a set of 25 BERT-base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random initialization and data shuffling.
Abstract: Experiments with pretrained models such as BERT are often based on a single checkpoint. While the conclusions drawn apply to the artifact (i.e., the particular instance of the model), it is not always clear whether they hold for the more general procedure (which includes the model architecture, training data, initialization scheme, and loss function). Recent work has shown that re-running pretraining can lead to substantially different conclusions about performance, suggesting that alternative evaluations are needed to make principled statements about procedures. To address this question, we introduce MultiBERTs: a set of 25 BERT-base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random initialization and data shuffling. The aim is to enable researchers to draw robust and statistically justified conclusions about pretraining procedures. The full release includes 25 fully trained checkpoints, as well as statistical guidelines and a code library implementing our recommended hypothesis testing methods. Finally, for five of these models we release a set of 28 intermediate checkpoints in order to support research on learning dynamics.

8 citations


Cited by
More filters
Posted Content
TL;DR: This work proposes a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can be fine-tuned with good performances on a wide range of tasks like its larger counterparts, and introduces a triple loss combining language modeling, distillation and cosine-distance losses.
Abstract: As Transfer Learning from large-scale pre-trained models becomes more prevalent in Natural Language Processing (NLP), operating these large models in on-the-edge and/or under constrained computational training or inference budgets remains challenging. In this work, we propose a method to pre-train a smaller general-purpose language representation model, called DistilBERT, which can then be fine-tuned with good performances on a wide range of tasks like its larger counterparts. While most prior work investigated the use of distillation for building task-specific models, we leverage knowledge distillation during the pre-training phase and show that it is possible to reduce the size of a BERT model by 40%, while retaining 97% of its language understanding capabilities and being 60% faster. To leverage the inductive biases learned by larger models during pre-training, we introduce a triple loss combining language modeling, distillation and cosine-distance losses. Our smaller, faster and lighter model is cheaper to pre-train and we demonstrate its capabilities for on-device computations in a proof-of-concept experiment and a comparative on-device study.

3,877 citations

Proceedings Article
30 Apr 2020
TL;DR: This work presents two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT, and uses a self-supervised loss that focuses on modeling inter-sentence coherence.
Abstract: Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.

2,367 citations

Posted Content
TL;DR: The authors proposed a self-supervised loss that focuses on modeling inter-sentence coherence, and showed it consistently helps downstream tasks with multientence inputs, achieving state-of-the-art results on the GLUE, RACE, and \squad benchmarks.
Abstract: Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and \squad benchmarks while having fewer parameters compared to BERT-large. The code and the pretrained models are available at this https URL.

2,247 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of knowledge distillation from the perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms, performance comparison and applications can be found in this paper.
Abstract: In recent years, deep neural networks have been successful in both industry and academia, especially for computer vision tasks. The great success of deep learning is mainly due to its scalability to encode large-scale data and to maneuver billions of model parameters. However, it is a challenge to deploy these cumbersome deep models on devices with limited resources, e.g., mobile phones and embedded devices, not only because of the high computational complexity but also the large storage requirements. To this end, a variety of model compression and acceleration techniques have been developed. As a representative type of model compression and acceleration, knowledge distillation effectively learns a small student model from a large teacher model. It has received rapid increasing attention from the community. This paper provides a comprehensive survey of knowledge distillation from the perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms, performance comparison and applications. Furthermore, challenges in knowledge distillation are briefly reviewed and comments on future research are discussed and forwarded.

1,027 citations

Journal ArticleDOI
Xipeng Qiu1, Tianxiang Sun1, Yige Xu1, Yunfan Shao1, Ning Dai1, Xuanjing Huang1 
TL;DR: Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era as mentioned in this paper, and a comprehensive review of PTMs for NLP can be found in this survey.
Abstract: Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next, we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

755 citations