scispace - formally typeset
Search or ask a question
Author

Iva Kejnovská

Bio: Iva Kejnovská is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: G-quadruplex & Antiparallel (biochemistry). The author has an hindex of 21, co-authored 52 publications receiving 2836 citations. Previous affiliations of Iva Kejnovská include Central European Institute of Technology & Masaryk University.


Papers
More filters
Journal ArticleDOI
TL;DR: Here the authors review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy, which significantly participated in all basic conformational findings on DNA.
Abstract: Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.

1,406 citations

Journal ArticleDOI
01 May 2012-Methods
TL;DR: It is shown that CD Spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies.

347 citations

Journal ArticleDOI
TL;DR: CD spectra of nucleic acids are reviewed, beginning with early studies on natural DNA molecules through analyses of synthetic polynucleotides to study of selected genomic fragments.

243 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration, which is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy.
Abstract: The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G(3)(TTAG(3))(3) forms an antiparallel quadruplex of the same basket type in solution containing either K(+) or Na(+) ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K(+)-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G(3)(TTAG(3))(3) motif. Both G(3)(TTAG(3))(3) and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K(+)-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K(+)-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG(3)(TTAG(3))(3) by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K(+) ions.

185 citations

Journal ArticleDOI
TL;DR: With an increasing repeat number, the fragment tetraplexes surprisingly are ever less thermostable and their migration and enthalpy decrease indicate increasing irregularities or domain splitting in their arrangements.
Abstract: Secondary structures of the G-rich strand of human telomere DNA fragments G3(TTAG3)n, n = 1-16, have been studied by means of circular dichroism spectroscopy and PAGE, in solutions of physiological potassium cation concentrations. It has been found that folding of these fragments into tetraplexes as well as tetraplex thermostabilities and enthalpy values depend on the number of TTAG3 repeats. The suggested topologies include, e.g. antiparallel and parallel bimolecular tetraplexes, an intramolecular antiparallel tetraplex, a tetraplex consisting of three parallel chains and one antiparallel chain, a poorly stable parallel intramolecular tetraplex, and both parallel and antiparallel tetramolecular tetraplexes. G3(TTAG3)3 folds into a single, stable and very compact intramolecular antiparallel tetraplex. With an increasing repeat number, the fragment tetraplexes surprisingly are ever less thermostable and their migration and enthalpy decrease indicate increasing irregularities or domain splitting in their arrangements. Reduced stability and different topology of lengthy telomeric tails could contribute to the stepwise telomere shortening process.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There is a significant repression of quadruplexes in the coding strand of exonic regions, which suggests that quadruplex-forming patterns are disfavoured in sequences that will form RNA.
Abstract: Guanine-rich DNA sequences of a particular form have the ability to fold into four-stranded structures called G-quadruplexes. In this paper, we present a working rule to predict which primary sequences can form this structure, and describe a search algorithm to identify such sequences in genomic DNA. We count the number of quadruplexes found in the human genome and compare that with the figure predicted by modelling DNA as a Bernoulli stream or as a Markov chain, using windows of various sizes. We demonstrate that the distribution of loop lengths is significantly different from what would be expected in a random case, providing an indication of the number of potentially relevant quadruplex-forming sequences. In particular, we show that there is a significant repression of quadruplexes in the coding strand of exonic regions, which suggests that quadruplex-forming patterns are disfavoured in sequences that will form RNA.

1,493 citations

Journal ArticleDOI
TL;DR: Here the authors review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy, which significantly participated in all basic conformational findings on DNA.
Abstract: Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.

1,406 citations

01 Jan 2010
TL;DR: It is found that women over 50 are more likely to have a family history of diabetes, especially if they are obese, than women under the age of 50.
Abstract: Hypertension 66 (20.3%) 24 (24.2%) 30 (16.3%) NS Diabetes 20 (6.2%) 7 (7.1%) 10 (5.4%) NS Excess weight 78 (24%) 27 (27.3%) 44 (23.9%) NS Smokers 64 (19.7%) 17 (17.2%) 35 (19.0%) NS Age >50 years 137 (42.2%) 54 (54.5%) 67 (36.4%) <0.02 Kidney disease 7 (2.2%) 1 (1%) 5 (2.7%) NS Family history, DM 102 (31.4%) 28 (28.3%) 66 (35.9%) NS

1,369 citations

Journal ArticleDOI
TL;DR: There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression.

1,235 citations

Journal ArticleDOI
TL;DR: This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription.
Abstract: In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription.

1,176 citations