scispace - formally typeset
Search or ask a question
Author

Ivan Kojadinovic

Bio: Ivan Kojadinovic is an academic researcher from University of Pau and Pays de l'Adour. The author has contributed to research in topics: Copula (probability theory) & Resampling. The author has an hindex of 26, co-authored 86 publications receiving 2906 citations. Previous affiliations of Ivan Kojadinovic include École polytechnique de l'université de Nantes & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: The copula-based modeling of multivariate distributions with continuous margins is presented as a succession of rank-based tests: a multivariate test of randomness followed by a test of mutual independence and a series of goodness-of-fit tests.
Abstract: The copula-based modeling of multivariate distributions with continuous margins is presented as a succession of rank-based tests: a multivariate test of randomness followed by a test of mutual independence and a series of goodness-of-fit tests. All the tests under consideration are based on the empirical copula, which is a nonparametric rank-based estimator of the true unknown copula. The principles of the tests are recalled and their implementation in the copula R package is briefly described. Their use in the construction of a copula model from data is thoroughly illustrated on real insurance and financial data.

392 citations

Posted Content
TL;DR: In this paper, the main approaches to capacity identification in multi-attribute utility theory are reviewed and their advantages and inconveniences are discussed, and implemented within the Kappalab R package.
Abstract: The application of multi-attribute utility theory whose aggregation process is based on the Choquet integral requires the prior identification of a capacity. The main approaches to capacity identification proposed in the literature are reviewed and their advantages and inconveniences are discussed. All the reviewed methods have been implemented within the Kappalab R package. Their application is illustrated on a detailed example.

346 citations

Journal ArticleDOI
TL;DR: The main approaches to capacity identification proposed in the literature are reviewed and their advantages and inconveniences are discussed and their application is illustrated on a detailed example.

332 citations

Journal ArticleDOI
TL;DR: Axiomatizations of two classes of interaction indices, namely probabilistic interaction indices and cardinal-probabilistic intervention indices, generalizing Probabilistic values and semivalues, respectively are first proposed.

127 citations

Journal ArticleDOI
TL;DR: The study of the finite-sample performance of the multiplier version of the goodness-of-fit test for bivariate one-parameter copulas showed that it provides a valid alternative to the parametric bootstrap-based test while being orders of magnitude faster.
Abstract: Recent large scale simulations indicate that a powerful goodness-of-fit test for copulas can be obtained from the process comparing the empirical copula with a parametric estimate of the copula derived under the null hypothesis. A first way to compute approximate p-values for statistics derived from this process consists of using the parametric bootstrap procedure recently thoroughly revisited by Genest and Remillard. Because it heavily relies on random number generation and estimation, the resulting goodness-of-fit test has a very high computational cost that can be regarded as an obstacle to its application as the sample size increases. An alternative approach proposed by the authors consists of using a multiplier procedure. The study of the finite-sample performance of the multiplier version of the goodness-of-fit test for bivariate one-parameter copulas showed that it provides a valid alternative to the parametric bootstrap-based test while being orders of magnitude faster. The aim of this work is to extend the multiplier approach to multivariate multiparameter copulas and study the finite-sample performance of the resulting test. Particular emphasis is put on elliptical copulas such as the normal and the t as these are flexible models in a multivariate setting. The implementation of the procedure for the latter copulas proves challenging and requires the extension of the Plackett formula for the t distribution to arbitrary dimension. Extensive Monte Carlo experiments, which could be carried out only because of the good computational properties of the multiplier approach, confirm in the multivariate multiparameter context the satisfactory behavior of the goodness-of-fit test.

122 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Journal ArticleDOI
TL;DR: An explanation method for trees is presented that enables the computation of optimal local explanations for individual predictions, and the authors demonstrate their method on three medical datasets.
Abstract: Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nonlinear predictive models, yet comparatively little attention has been paid to explaining their predictions. Here we improve the interpretability of tree-based models through three main contributions. (1) A polynomial time algorithm to compute optimal explanations based on game theory. (2) A new type of explanation that directly measures local feature interaction effects. (3) A new set of tools for understanding global model structure based on combining many local explanations of each prediction. We apply these tools to three medical machine learning problems and show how combining many high-quality local explanations allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us to (1) identify high-magnitude but low-frequency nonlinear mortality risk factors in the US population, (2) highlight distinct population subgroups with shared risk characteristics, (3) identify nonlinear interaction effects among risk factors for chronic kidney disease and (4) monitor a machine learning model deployed in a hospital by identifying which features are degrading the model’s performance over time. Given the popularity of tree-based machine learning models, these improvements to their interpretability have implications across a broad set of domains. Tree-based machine learning models are widely used in domains such as healthcare, finance and public services. The authors present an explanation method for trees that enables the computation of optimal local explanations for individual predictions, and demonstrate their method on three medical datasets.

2,548 citations

Dissertation
01 Jan 1975

2,119 citations

Book
01 Jan 2007
TL;DR: A broad introduction into the topic of aggregation functions, and provides a concise account of the properties and the main classes of such functions, including classical means, medians, ordered weighted averaging functions, Choquet and Sugeno integrals, triangular norms, conorms and copulas, uninorms, nullnorms, and symmetric sums.
Abstract: Aggregation of information is of primary importance in the construction of knowledge based systems in various domains, ranging from medicine, economics, and engineering to decision-making processes, artificial intelligence, robotics, and machine learning. This book gives a broad introduction into the topic of aggregation functions, and provides a concise account of the properties and the main classes of such functions, including classical means, medians, ordered weighted averaging functions, Choquet and Sugeno integrals, triangular norms, conorms and copulas, uninorms, nullnorms, and symmetric sums. It also presents some state-of-the-art techniques, many graphical illustrations and new interpolatory aggregation functions. A particular attention is paid to identification and construction of aggregation functions from application specific requirements and empirical data. This book provides scientists, IT specialists and system architects with a self-contained easy-to-use guide, as well as examples of computer code and a software package. It will facilitate construction of decision support, expert, recommender, control and many other intelligent systems.

1,445 citations

Journal ArticleDOI
TL;DR: Chapman and Miller as mentioned in this paper, Subset Selection in Regression (Monographs on Statistics and Applied Probability, no. 40, 1990) and Section 5.8.
Abstract: 8. Subset Selection in Regression (Monographs on Statistics and Applied Probability, no. 40). By A. J. Miller. ISBN 0 412 35380 6. Chapman and Hall, London, 1990. 240 pp. £25.00.

1,154 citations