scispace - formally typeset
Search or ask a question
Author

Ivan Kourtchev

Bio: Ivan Kourtchev is an academic researcher from University of Cambridge. The author has contributed to research in topics: Aerosol & Isoprene. The author has an hindex of 28, co-authored 46 publications receiving 3511 citations. Previous affiliations of Ivan Kourtchev include University of Antwerp & University College Cork.

Papers
More filters
Journal ArticleDOI
TL;DR: Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F.
Abstract: Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway

390 citations

Journal ArticleDOI
TL;DR: In this article, a new route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, methacrolein and methacrylic acid, was introduced, namely, multiphase acid-catalysed oxidation with hydrogen peroxide, a perfect analogue to atmospheric sulphate formation.

359 citations

Journal ArticleDOI
TL;DR: In this paper, the unknown α-pinene tracer compound with molecular weight (MW) 204 was confirmed as the C8-tricarboxylic acid 3-methyl-1,2,3-butanetricarboxyl acid.
Abstract: [1] Highly oxygenated compounds assigned to be oxidation products of α-pinene have recently been observed in substantial concentrations in ambient aerosols. Here, we confirm the unknown α-pinene tracer compound with molecular weight (MW) 204 as the C8-tricarboxylic acid 3-methyl-1,2,3-butanetricarboxylic acid. Its gas and liquid chromatographic behaviors and its mass spectral characteristics in electron ionization and negative ion electrospray ionization perfectly agree with those of a synthesized reference compound. The formation of this compound is explained by further reaction of cis-pinonic acid involving participation of the OH radical. This study illustrates that complex, multi-generation chemistry holds for the photooxidation of α-pinene in the presence of NOx.

273 citations

Journal ArticleDOI
TL;DR: The chemical composition of carbonaceous aerosols collected during the LBA-SMOCC field experiment, conducted in Rondˆ onia, Brazil, in 2002 during the transition from the dry to the wet season, was investigated by a suite of state-of-the-art analytical techniques as discussed by the authors.
Abstract: The chemical composition of carbonaceous aerosols collected during the LBA-SMOCC field experiment, conducted in Rondˆ onia, Brazil, in 2002 during the transition from the dry to the wet season, was investigated by a suite of state-of-the-art analytical techniques. The period of most intense biomass burning was characterized by high concen- trations of submicron particles rich in carbonaceous material and water-soluble organic compounds (WSOC). At the on- set of the rainy period, submicron total carbon (TC) concen- trations decreased by about 20 times. In contrast, the con- centration of supermicron TC was fairly constant through- out the experiment, pointing to a constant emission of coarse particles from the natural background. About 6-8% of TC (9-11% of WSOC) was speciated at the molecular level by GC-MS and liquid chromatography. Polyhydroxylated com- pounds, aliphatic and aromatic acids were the main classes of compounds accounted for by individual compound analysis. Functional group analysis by proton NMR and chromato- graphic separation on ion-exchange columns allowed char- acterization of ca. 50-90% of WSOC into broad chemical classes (neutral species/light acids/humic-like substances). In spite of the significant change in the chemical composi- tion of tracer compounds from the dry to the wet period, the functional groups and the general chemical classes of WSOC changed only to a small extent. Model compounds representing size-resolved WSOC chemical composition for the different periods of the campaign are then proposed in this paper, based on the chemical characterization by both individual compound analysis and functional group analy- sis deployed during the LBA-SMOCC experiment. Model compounds reproduce quantitatively the average chemical structure of WSOC and can be used as best-guess surrogates in microphysical models involving organic aerosol particles over tropical areas affected by biomass burning.

255 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed existing knowledge with regard to organic aerosol (OA) of importance for global climate modelling and defined critical gaps needed to reduce the involved uncertainties, and synthesized the information to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosols.
Abstract: The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.

2,863 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that brown carbon may severely bias measurements of atmospheric "black carbon" and "elemental carbon" over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of C brown is high relative to that of soot carbon.
Abstract: Although the definition and measurement techniques for atmospheric "black carbon" ("BC") or "elemental carbon'' ("EC") have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ("brown carbon, C brown ") makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC) in the atmosphere. Evidence for the atmospheric presence of C brown comes from (1) spectral aerosol light absorption measurements near specific combustion sources, (2) observations of spectral properties of water extracts of continental aerosol, (3) laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4) indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of "BC" and "EC" over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of C brown is high relative to that of soot carbon. Chemical measurements to determine "EC" are biased by the refractory nature of C brown as well as by complex matrix interferences. Optical measurements of "BC" suffer from a number of problems: (1) many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2) there is no unique conversion factor between light absorption and "EC" or "BC" concentration in ambient aerosols, and (3) the difference in spectral properties between the different types of LAC, as well as the chemical complexity of C brown , lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of C brown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our understanding of tropospheric processes, including their influence on UV-irradiance, atmospheric photochemistry and radiative transfer in clouds.

1,706 citations

Journal ArticleDOI
TL;DR: A review of the chemistry of the formation and continuing transformation of low-volatility species in the atmosphere can be found in this article, where the primary focus is chemical processes that can change the volatility of organic compounds: oxidation reactions in the gas phase, reaction in the particle phase, and reaction in either phase over several generations.

1,411 citations