scispace - formally typeset
Search or ask a question
Author

Ivan Miguel Pires

Bio: Ivan Miguel Pires is an academic researcher from University of Beira Interior. The author has contributed to research in topics: Computer science & Medicine. The author has an hindex of 16, co-authored 103 publications receiving 789 citations. Previous affiliations of Ivan Miguel Pires include Altran & Polytechnic Institute of Viseu.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
02 Feb 2016-Sensors
TL;DR: The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADL).
Abstract: This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs).

137 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of the usability and user-perceived quality of mobile health applications and the challenges related to scientific validation of these mobile applications is provided.
Abstract: Mobile health applications are applied for different purposes. Healthcare professionals and other users can use this type of mobile applications for specific tasks, such as diagnosis, information, prevention, treatment, and communication. This paper presents an analysis of mobile health applications used by healthcare professionals and their patients. A secondary objective of this article is to evaluate the scientific validation of these mobile health applications and to verify if the results provided by these applications have an underlying sound scientific foundation. This study also analyzed literature references and the use of mobile health applications available in online application stores. In general, a large part of these mobile health applications provides information about scientific validation. However, some mobile health applications are not validated. Therefore, the main contribution of this paper is to provide a comprehensive analysis of the usability and user-perceived quality of mobile health applications and the challenges related to scientific validation of these mobile applications.

67 citations

Journal ArticleDOI
TL;DR: iAirBot is a significant system for enhanced living environments, occupational health, and well-being because it connects several technological fields and knowledge areas, such as ambient assisted living, Internet of Things, wireless sensor networks, social networks, and indoor air quality.
Abstract: This paper presents iAirBot, an assistive robot for indoor air quality monitoring based on Internet of Things. The system can communicate with occupants and triggers alerts automatically using social networks. The information can be accessed by the caregiver to plan interventions for enhanced living environments in a timely manner. The results are promising, as the proposed architecture presents a cost-effective assistive robot for indoor quality monitoring. It connects several technological fields and knowledge areas, such as ambient assisted living, Internet of Things, wireless sensor networks, social networks, and indoor air quality. When compared to other systems, iAirBot stands out for the modularity and scalability of its sensors network, as well as the use of social networks for information sharing. Therefore, iAirBot is a significant system for enhanced living environments, occupational health, and well-being.

39 citations

Journal ArticleDOI
TL;DR: This work was supported by FCT project UID/EEA/50008/2013 and the COST Action IC1303 – AAPELE – Architectures, Algorithms and Protocols for Enhanced Living Environments.

39 citations

Journal ArticleDOI
26 Apr 2021-Sensors
TL;DR: In this article, the authors proposed a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases, which consists of a newly created, open-source IoT data generator tool named IoT-Flock, allowing researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic.
Abstract: The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices' security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey discusses clear motivations and advantages of multi-sensor data fusion and particularly focuses on physical activity recognition, aiming at providing a systematic categorization and common comparison framework of the literature, by identifying distinctive properties and parameters affecting data fusion design choices at different levels.

680 citations

Journal ArticleDOI
TL;DR: The focus of this review is to provide in-depth summaries of deep learning methods for mobile and wearable sensor-based human activity recognition, and categorise the studies into generative, discriminative and hybrid methods.
Abstract: Human activity recognition systems are developed as part of a framework to enable continuous monitoring of human behaviours in the area of ambient assisted living, sports injury detection, elderly care, rehabilitation, and entertainment and surveillance in smart home environments. The extraction of relevant features is the most challenging part of the mobile and wearable sensor-based human activity recognition pipeline. Feature extraction influences the algorithm performance and reduces computation time and complexity. However, current human activity recognition relies on handcrafted features that are incapable of handling complex activities especially with the current influx of multimodal and high dimensional sensor data. With the emergence of deep learning and increased computation powers, deep learning and artificial intelligence methods are being adopted for automatic feature learning in diverse areas like health, image classification, and recently, for feature extraction and classification of simple and complex human activity recognition in mobile and wearable sensors. Furthermore, the fusion of mobile or wearable sensors and deep learning methods for feature learning provide diversity, offers higher generalisation, and tackles challenging issues in human activity recognition. The focus of this review is to provide in-depth summaries of deep learning methods for mobile and wearable sensor-based human activity recognition. The review presents the methods, uniqueness, advantages and their limitations. We not only categorise the studies into generative, discriminative and hybrid methods but also highlight their important advantages. Furthermore, the review presents classification and evaluation procedures and discusses publicly available datasets for mobile sensor human activity recognition. Finally, we outline and explain some challenges to open research problems that require further research and improvements.

601 citations

Journal ArticleDOI
TL;DR: This paper offers a detailed introduction to the background of data fusion and machine learning in terms of definitions, applications, architectures, processes, and typical techniques, and proposes a number of requirements to review and evaluate the performance of existing fusion methods based on machine learning.

309 citations

01 Jan 2016

308 citations