scispace - formally typeset
Search or ask a question
Author

Ivan Petrović

Bio: Ivan Petrović is an academic researcher from University of Zagreb. The author has contributed to research in topics: Mobile robot & Motion planning. The author has an hindex of 28, co-authored 248 publications receiving 3002 citations. Previous affiliations of Ivan Petrović include Czech Technical University in Prague & University of Toronto.


Papers
More filters
Proceedings ArticleDOI
01 May 2020
TL;DR: Inverse kinematics for serial kinematic chains is a nonlinear problem for which closed form solutions cannot easily be obtained as discussed by the authors, and therefore, computationally efficient numerical methods that can be adapted to a general class of manipulators are of great importance.
Abstract: Inverse kinematics is a fundamental challenge for articulated robots: fast and accurate algorithms are needed for translating task-related workspace constraints and goals into feasible joint configurations. In general, inverse kinematics for serial kinematic chains is a difficult nonlinear problem, for which closed form solutions cannot easily be obtained. Therefore, computationally efficient numerical methods that can be adapted to a general class of manipulators are of great importance. In this paper, we use convex optimization techniques to solve the inverse kinematics problem with joint limit constraints for highly redundant serial kinematic chains with spherical joints in two and three dimensions. This is accomplished through a novel formulation of inverse kinematics as a nearest point problem, and with a fast sum of squares solver that exploits the sparsity of kinematic constraints for serial manipulators. Our method has the advantages of post-hoc certification of global optimality and a runtime that scales polynomially with the number of degrees of freedom. Additionally, we prove that our convex relaxation leads to a globally optimal solution when certain conditions are met, and demonstrate empirically that these conditions are common and represent many practical instances. Finally, we provide an open source implementation of our algorithm.

9 citations

Journal ArticleDOI
TL;DR: A hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein–Bézier (BB) motion primitives, which yields a collision-safe and smooth path that is close to spatially optimal (the Euclidean shortest path) with a guaranteed continuity of curvature.
Abstract: This article proposes a hybrid path-planning algorithm, the HE* algorithm, which combines the discrete grid-based E* search and continuous Bernstein–Bezier (BB) motion primitives. Several researchers have addressed the smooth path planning problem and the sample-based integrated path planning techniques. We believe that the main benefits of the proposed approach are: directly drivable path, no additional post-optimization tasks, reduced search branching, low computational complexity, and completeness guarantee. Several examples and comparisons with the state-of-the-art planners are provided to illustrate and evaluate the main advantages of the HE* algorithm. HE* yields a collision-safe and smooth path that is close to spatially optimal (the Euclidean shortest path) with a guaranteed continuity of curvature. Therefore, the path is easily drivable for a wheeled robot without any additional post-optimization and smoothing required. HE* is a two-stage algorithm which uses a direction-guiding heuristics computed by the E* search in the first stage, which improves the quality and reduces the complexity of the hybrid search in the second stage. In each iteration, the search is expanded by a set of BBs, the parameters of which adapt continuously according to the guiding heuristics. Completeness is guaranteed by relying on a complete node mechanism, which also provides an upper bound for the calculated path cost. A remarkable feature of HE* is that it produces good results even at coarse resolutions.

9 citations

Proceedings ArticleDOI
01 Oct 2012
TL;DR: A new nonlinear longitudinal spacing control of vehicles in a platoon is proposed, which takes into account both vehicle characteristics and road conditions and ensures the string stability of a string of vehicles, traffic flow stability and in comparison with the common constant time-gap spacing control policy increases the capacity of the traffic flow.
Abstract: Vehicle platoon systems are a promising approach for new transportation systems because of their innovative capabilities. A basic problem in platoon systems is the control of the inter-vehicle spacing. In this paper, a new nonlinear longitudinal spacing control of vehicles in a platoon is proposed, which takes into account both vehicle characteristics and road conditions. It ensures the string stability of a string of vehicles, traffic flow stability and in comparison with the common constant time-gap spacing control policy increases the capacity of the traffic flow.

9 citations

Journal ArticleDOI
TL;DR: This paper analyzes two groups of data fusion methods: centralized independent likelihood fusion, and hierarchical fusion, where each sensor runs its own local estimate which is then communicated to the fusion center along with the corresponding uncertainty, and presents explicit solutions in the forms of extended information filter, unscented information filter and particle filter.
Abstract: In this paper we study the problem of Bayesian sensor fusion for dynamic object tracking. The prospects of utilizing measurements from several sensors to infer about a system state are manyfold and...

9 citations

Journal Article
TL;DR: In this paper, the authors presented a formal calculation method of a deadlock prevention supervisor by the use of Petri nets, which uses reachability tree to detect deadlock state and iterative siphon control method to synthesize the supervisor.
Abstract: This paper presents a formal calculation method of a deadlock prevention supervisor by the use of Petri nets. The proposed algorithm uses reachability tree to detect deadlock state and iterative siphon control method to synthesize the deadlock prevention supervisor. Such supervisor is maximally permissive and consists of minimal number of control places. The algorithm is intended for reversible or partially reversible P-T Petri net, but it can also be applied to Ordinary Petri nets. The calculation of the supervisor is illustrated by two examples. The first example shows the synthesis of deadlock prevention supervisor in a manufacturing system consisting of three conveyors and three robots, where the deadlock can occur due to concurrent requests of the conveyors for the robot engagements and unpredictable duration of those engagements. The second example shows the synthesis of deadlock prevention supervisor in a marine traffic system, where dangerous vessel deadlock situations may occur in case of vessels’ irregular motion through the system. To avoid this, the vessel traffic is supervised and controlled by traffic lights using the deadlock prevention supervisor, which is responsible for vessels’ stopping only in the case of dangerous situation and until this situation elapses.

9 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations

Journal ArticleDOI
TL;DR: A review of motion planning techniques implemented in the intelligent vehicles literature, with a description of the technique used by research teams, their contributions in motion planning, and a comparison among these techniques is presented.
Abstract: Intelligent vehicles have increased their capabilities for highly and, even fully, automated driving under controlled environments. Scene information is received using onboard sensors and communication network systems, i.e., infrastructure and other vehicles. Considering the available information, different motion planning and control techniques have been implemented to autonomously driving on complex environments. The main goal is focused on executing strategies to improve safety, comfort, and energy optimization. However, research challenges such as navigation in urban dynamic environments with obstacle avoidance capabilities, i.e., vulnerable road users (VRU) and vehicles, and cooperative maneuvers among automated and semi-automated vehicles still need further efforts for a real environment implementation. This paper presents a review of motion planning techniques implemented in the intelligent vehicles literature. A description of the technique used by research teams, their contributions in motion planning, and a comparison among these techniques is also presented. Relevant works in the overtaking and obstacle avoidance maneuvers are presented, allowing the understanding of the gaps and challenges to be addressed in the next years. Finally, an overview of future research direction and applications is given.

1,162 citations

Journal Article
TL;DR: A new approach to visual navigation under changing conditions dubbed SeqSLAM, which removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images.
Abstract: Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.

686 citations