scispace - formally typeset
Search or ask a question
Author

Ivan Rech

Bio: Ivan Rech is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Photon counting & Single-photon avalanche diode. The author has an hindex of 31, co-authored 193 publications receiving 4653 citations. Previous affiliations of Ivan Rech include Instituto Politécnico Nacional & University of Milano-Bicocca.


Papers
More filters
Journal ArticleDOI
10 Oct 2003-Science
TL;DR: By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, the variation of flavin-tyrosine distance over time is observed, suggesting the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.
Abstract: Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.

810 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of solid-state avalanche detectors of single optical photons is discussed and issues for further progress are discussed, and the main technological issues that hamper the development of detectors with wide sensitive area and of array detectors with high filling factor are illustrated.
Abstract: The evolution of solid-state avalanche detectors of single optical photons is outlined and the issues for further progress are discussed. Physical phenomena that underlay the operation of the single-photon avalanche diodes (SPAD) and determine the performance are considered and their role is assessed (detection efficiency; dark-counting rate; afterpulsing; photon timing resolution; etc.). The main technological issues that hamper the development of detectors with wide sensitive area and of array detectors with high filling factor are illustrated. Silicon SPADs are the main focus of attention; infrared-sensitive SPADs in germanium and in compound semiconductors are also dealt with. The role of the active-quenching circuits (AQC) is assessed and the evolution is outlined up to integrated AQCs, which offer the prospect of monolithic integration of complete photon counter instruments.

352 citations

Journal ArticleDOI
TL;DR: Silicon single-photon avalanche diodes (SPADs) are nowadays a solid-state alternative to photomultiplier tubes (PMTs) in single photon counting (SPC) and time-correlated singlephoton counting over the visible spectral range up to 1mum wavelength as discussed by the authors.
Abstract: Silicon single-photon avalanche diodes (SPADs) are nowadays a solid-state alternative to photomultiplier tubes (PMTs) in single-photon counting (SPC) and time-correlated single-photon counting (TCSPC) over the visible spectral range up to 1-mum wavelength. SPADs implemented in planar technology compatible with CMOS circuits offer typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency, since they do not rely on electron emission in vacuum from a photocathode as do PMTs, but instead on the internal photoelectric effect. However, PMTs offer much wider sensitive area, which greatly simplifies the design of optical systems; they also attain remarkable performance at high counting rate, and offer picosecond timing resolution with microchannel plate models. In order to make SPAD detectors more competitive in a broader range of SPC and TCSPC applications, it is necessary to face several issues in the semiconductor device design and technology. Such issues will be discussed in the context of the two possible approaches to such a challenge: employing a standard industrial high-voltage CMOS technology or developing a dedicated CMOS-compatible technology. Advances recently attained in the development of SPAD detectors will be outlined and discussed with reference to both single-element detectors and integrated detector arrays.

295 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid single photon detection scheme for telecom wavelengths based on nonlinear sum-frequency generation and silicon single-photon avalanche diodes (SPADs) was developed.
Abstract: We have developed a hybrid single photon detection scheme for telecom wavelengths based on nonlinear sum-frequency generation and silicon single-photon avalanche diodes (SPADs). The SPAD devices employed have been designed to have very narrow temporal response, i.e. low jitter ~40?ps, which we can exploit for increasing the allowable bit rate for quantum key distribution. The wavelength conversion is obtained using periodically poled lithium niobate waveguides (W/Gs). The inherently high efficiency of these W/Gs allows us to use a continuous wave laser to seed the nonlinear conversion so as to have a continuous detection scheme. We also present a 1.27?GHz qubit repetition rate, one-way phase encoding, quantum key distribution experiment operating at telecom wavelengths that takes advantage of this detection scheme. The proof-of-principle experiment shows a system capable of MHz raw count rates with a QBER less than 2% and estimated secure key rates greater than 100?kbit?s?1 over 25?km.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state of the art of this evolution, examining and comparing different classes of quenching circuits and explaining their mode of operation, their advantages and disadvantages.
Abstract: An ever wider variety of applications employ Single Photon Avalanche Diodes (SPADs) for the detection of faint optical signals. SPADs are p-n junction biased above the breakdown voltage and operate in Geiger-mode: each electron-hole pair can trigger an avalanche multiplication process that causes the current to swiftly rise to its final value. Additional quenching electronics is necessary for a SPAD proper working. The additional electronics characteristics directly affect the system's obtainable performances. Different quenching circuits affect the detector performances in different ways. In the last 15 years there has been considerable development in the integration of the quenching circuitry directly with the detector, thus leading to improved performances. This paper reviews the state of the art of this evolution, examining and comparing different classes of quenching circuits and explaining their mode of operations, their advantages and disadvantages.

146 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete- variable, continuous-variable, and distributed-phase-reference protocols).
Abstract: Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).

2,926 citations

Journal ArticleDOI
TL;DR: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes as mentioned in this paper, and a large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation.
Abstract: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.

2,119 citations

Journal ArticleDOI
12 Dec 2007-Nature
TL;DR: The dream is to 'watch' proteins in action in real time at atomic resolution, which requires addition of a fourth dimension, time, to structural biology so that the positions in space and time of all atoms in a protein can be described in detail.
Abstract: Because proteins are central to cellular function, researchers have sought to uncover the secrets of how these complex macromolecules execute such a fascinating variety of functions. Although static structures are known for many proteins, the functions of proteins are governed ultimately by their dynamic character (or 'personality'). The dream is to 'watch' proteins in action in real time at atomic resolution. This requires addition of a fourth dimension, time, to structural biology so that the positions in space and time of all atoms in a protein can be described in detail.

2,109 citations

Journal ArticleDOI
TL;DR: The lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e via the loss of energy through fluorescence and other non-radiative processes and the average length of time τ is called the mean lifetime, or simply lifetime.
Abstract: When a molecule absorbs a photon of appropriate energy, a chain of photophysical events ensues, such as internal conversion or vibrational relaxation (loss of energy in the absence of light emission), fluorescence, intersystem crossing (from singlet state to a triplet state) and phosphorescence, as shown in the Jablonski diagram for organic molecules (Fig. 1). Each of the processes occurs with a certain probability, characterized by decay rate constants (k). It can be shown that the average length of time τ for the set of molecules to decay from one state to another is reciprocally proportional to the rate of decay: τ = 1/k. This average length of time is called the mean lifetime, or simply lifetime. It can also be shown that the lifetime of a photophysical process is the time required by a population of N electronically excited molecules to be reduced by a factor of e. Correspondingly, the fluorescence lifetime is the time required by a population of excited fluorophores to decrease exponentially to N/e via the loss of energy through fluorescence and other non-radiative processes. The lifetime of photophycal processes vary significantly from tens of femotoseconds for internal conversion1,2 to nanoseconds for fluorescence and microseconds or seconds for phosphorescence.1 Open in a separate window Figure 1 Jablonski diagram and a timescale of photophysical processes for organic molecules.

1,829 citations