scispace - formally typeset
Search or ask a question
Author

Ivan Simmons

Bio: Ivan Simmons is an academic researcher. The author has contributed to research in topics: Particulates & Annual report. The author has an hindex of 10, co-authored 27 publications receiving 363 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A European scale network was established in 2006 as part of the NitroEurope Integrated Project to infer reactive nitrogen (Nr) dry deposition fluxes, based on low-cost sampling of gaseous and aerosol species and inferential modelling as discussed by the authors.

80 citations

16 Mar 2007
TL;DR: In this article, the authors developed a new model to predict the impacts of land use change and climate change on organic soils in Scotland and Wales, which is based on meteorological data and soil descriptions.
Abstract: Background Climate change, caused by greenhouse gas ( GHG) emissions, is one of the most serious threats facing our planet, and is of concern at both UK and devolved administration levels. Accurate predictions for the effects of changes in climate and land use on GHG emissions are vital for informing land use policy. Models which are currently used to predict differences in soil carbon (C) and nitrogen (N) caused by these changes, have been derived from those based on mineral soils or deep peat. None of these models is entirely satisfactory for describing what happens to organic soils following land-use change. Reports of Scottish GHG emissions have revealed that approximately 15% of Scotland's total emissions come from land use changes on Scotland's high carbon soils; the figure is much lower for Wales. It is therefore important to reduce the major uncertainty in assessing the carbon store and flux from land use change on organic soils, especially those which are too shallow to be deep peats but still contain a large reserve of C. In order to predict the response of organic soils to external change we need to develop a model that reflects more accurately the conditions of these soils. The development of a model for organic soils will help to provide more accurate values of net change to soil C and N in response to changes in land use and climate and may be used to inform reporting to UKGHG inventories. Whilst a few models have been developed to describe deep peat formation and turnover, none have so far been developed suitable for examining the impacts of land-use and climate change on the types of organic soils often subject to land-use change in Scotland and Wales. Organic soils subject to land-use change are often (but not exclusively) characterised by a shallower organic horizon than deep peats (e.g. organo-mineral soils such as peaty podzols and peaty gleys). The main aim of the model developed in this project was to simulate the impacts of land-use and climate change in these types of soils. The model is, a) be driven by commonly available meteorological data and soil descriptions, b) able to simulate and predict C and N turnover in organic soils, c) able to predict the impacts of land-use change and climate change on C and N stores in organic soils in Scotland and Wales. In addition to developing the model, we have undertaken a number of other modelling exercises, literature searches, desk studies, data base exercises, and experimentation to answer a range of other questions associated with the responses of organic soils in Scotland and Wales to climate and land-use change. Aims of the ECOSSE project The aims of the study were: To develop a new model of C and N dynamics that reflects conditions in organic soils in Scotland and Wales and predicts their likely responses to external factors To identify the extent of soils that can be considered organic in Scotland and Wales and provide an estimate of the carbon contained within them To predict the contribution of CO 2, nitrous oxide and methane emissions from organic soils in Scotland and Wales, and provide advice on how changes in land use and climate will affect the C and N balance In order to fulfil these aims, the project was broken down into modules based on these objectives and the report uses that structure. The first aim is covered by module 2, the second aim by module 1, and the third aim by modules 3 to 8. Many of the modules are inter-linked. Objectives of the ECOSSE project The main objectives of the project were to: Describe the distribution of organic soils in Scotland and Wales and provide an estimate of the C contained in them Develop a model to simulate C and N cycling in organic soils and provide predictions as to how they will respond to land-use, management and climate change using elements of existing peat, mineral and forest soil models Provide predictive statements on the effects of land-use and climate change on organic soils and the relationships to GHG emissions, including CO 2, nitrous oxide and methane. Provide predictions on the effects of land use change and climate change on the release of Dissolved Organic Matter from organic soils Provide estimates of C loss from scenarios of accelerated erosion of organic soils Suggest best options for mitigating C and N loss from organic soils Provide guidelines on the likely effects of changing land-use from grazing or semi-natural vegetation to forestry on C and N in organic soils Use the land-use change data derived from the Countryside Surveys of Scotland and Wales to provide predictive estimates for changes to C and N balance in organic soils over time.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used to assess spatial, seasonal and longterm variability in atmospheric ammonia (NH3: 1998-2014) and particulate ammonium (NH4+: 1999-2014).
Abstract: . A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium (NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (

44 citations

Journal ArticleDOI
TL;DR: In this article, a boundary layer budget approach is applied to the United Kingdom and an inverse modelling technique is used to derive total and spatial apportionment of emissions for CO, CO 2, CH 4, N 2 O, HFC-134a, HCFC-141b, HC FC-142b, and HCFC -22.

30 citations

Journal ArticleDOI
TL;DR: A Bayesian approach was used to calculate N2O emission factors (EFs) and their associated uncertainties from flux chamber measurements made after the application of nitrogen fertilisers at four grassland sites in the UK, indicating that more complex models may be needed, particularly for measurement data with high temporal resolution.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere as mentioned in this paper.
Abstract: . The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

826 citations

Journal ArticleDOI
TL;DR: A review of the state of the art in understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere can be found in this article.

627 citations

Journal ArticleDOI
TL;DR: The Meteorological Synthesizing Centre-West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP) has been performing model calculations in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) for more than 30 years as mentioned in this paper.
Abstract: The Meteorological Synthesizing Centre-West (MSC-W) of the European Monitoring and Evaluation Programme (EMEP) has been performing model calculations in support of the Convention on Long Range Transboundary Air Pollution (CLRTAP) for more than 30 years The EMEP MSC-W chemical transport model is still one of the key tools within European air pollution policy assessments Traditionally, the model has covered all of Europe with a resolution of about 50 km x 50 km, and extending vertically from ground level to the tropopause (100 hPa) The model has changed extensively over the last ten years, however, with flexible processing of chemical schemes, meteorological inputs, and with nesting capability: the code is now applied on scales ranging from local (ca 5 km grid size) to global (with 1 degree resolution) The model is used to simulate photo-oxidants and both inorganic and organic aerosols In 2008 the EMEP model was released for the first time as public domain code, along with all required input data for model runs for one year The second release of the EMEP MSC-W model became available in mid 2011, and a new release is targeted for summer 2012 This publication is in-tended to document this third release of the EMEP MSC-W model The model formulations are given, along with details of input data-sets which are used, and a brief background on some of the choices made in the formulation is presented The model code itself is available at wwwemepint, along with the data required to run for a full year over Europe

587 citations

Journal ArticleDOI
TL;DR: An increase in fertilizer use through increasing demands for food and biofuels as population increases is expected, and management of ammonia or abatement is necessary.

430 citations