scispace - formally typeset
Search or ask a question
Author

Ivan Skachko

Bio: Ivan Skachko is an academic researcher from Rutgers University. The author has contributed to research in topics: Graphene & Fractional quantum Hall effect. The author has an hindex of 9, co-authored 11 publications receiving 3963 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work shows that the fluctuations are significantly reduced in suspended graphene samples and reports low-temperature mobility approaching 200,000 cm2 V-1 s-1 for carrier densities below 5 x 109 cm-2, which cannot be attained in semiconductors or non-suspended graphene.
Abstract: The discovery of graphene1,2 raises the prospect of a new class of nanoelectronic devices based on the extraordinary physical properties3,4,5,6 of this one-atom-thick layer of carbon. Unlike two-dimensional electron layers in semiconductors, where the charge carriers become immobile at low densities, the carrier mobility in graphene can remain high, even when their density vanishes at the Dirac point. However, when the graphene sample is supported on an insulating substrate, potential fluctuations induce charge puddles that obscure the Dirac point physics. Here we show that the fluctuations are significantly reduced in suspended graphene samples and we report low-temperature mobility approaching 200,000 cm2 V−1 s−1 for carrier densities below 5 × 109 cm−2. Such values cannot be attained in semiconductors or non-suspended graphene. Moreover, unlike graphene samples supported by a substrate, the conductivity of suspended graphene at the Dirac point is strongly dependent on temperature and approaches ballistic values at liquid helium temperatures. At higher temperatures, above 100 K, we observe the onset of thermally induced long-range scattering. The novel electronic properties of graphene can be compromised when it is supported on an insulating substrate. However, suspended graphene samples can display low-temperature mobility values that cannot be attained in semiconductors or non-suspended graphene, and the conductivity approaches ballistic values at liquid-helium temperatures.

2,977 citations

Journal ArticleDOI
Xu Du1, Ivan Skachko1, Fabian Duerr1, Adina Luican1, Eva Y. Andrei1 
12 Nov 2009-Nature
TL;DR: The quintessential collective quantum behaviour in two dimensions, the fractional quantum Hall effect (FQHE), has so far resisted observation in graphene despite intense efforts and theoretical predictions of its existence and it is believed that these results will open the door to the physics of FQHE and other collective behaviour in graphene.
Abstract: The fractional quantum Hall effect is a quintessential manifestation of the collective behaviour associated with strongly interacting charge carriers confined to two dimensions and subject to a strong magnetic field. It is predicted that the charge carriers present in graphene — an atomic layer of carbon that can be seen as the 'perfect' two-dimensional system — are subject to strong interactions. Nevertheless, the phenomenon had eluded experimental observation until now: in this issue two groups report fractional quantum Hall effect in suspended sheets of graphene, probed in a two-terminal measurement setup. The researchers also observe a magnetic-field-induced insulating state at low carrier density, which competes with the quantum Hall effect and limits its observation to the highest-quality samples only. These results pave the way for the study of the rich collective behaviour of Dirac fermions in graphene. The fractional quantum Hall effect (FQHE) is the quintessential collective quantum behaviour of charge carriers confined to two dimensions but it has not yet been observed in graphene, a material distinguished by the charge carriers' two-dimensional and relativistic character. Here, and in an accompanying paper, the FQHE is observed in graphene through the use of devices containing suspended graphene sheets; the results of these two papers open a door to the further elucidation of the complex physical properties of graphene. In graphene, which is an atomic layer of crystalline carbon, two of the distinguishing properties of the material are the charge carriers’ two-dimensional and relativistic character. The first experimental evidence of the two-dimensional nature of graphene came from the observation of a sequence of plateaus in measurements of its transport properties in the presence of an applied magnetic field1,2. These are signatures of the so-called integer quantum Hall effect. However, as a consequence of the relativistic character of the charge carriers, the integer quantum Hall effect observed in graphene is qualitatively different from its semiconductor analogue3. As a third distinguishing feature of graphene, it has been conjectured that interactions and correlations should be important in this material, but surprisingly, evidence of collective behaviour in graphene is lacking. In particular, the quintessential collective quantum behaviour in two dimensions, the fractional quantum Hall effect (FQHE), has so far resisted observation in graphene despite intense efforts and theoretical predictions of its existence4,5,6,7,8,9. Here we report the observation of the FQHE in graphene. Our observations are made possible by using suspended graphene devices probed by two-terminal charge transport measurements10. This allows us to isolate the sample from substrate-induced perturbations that usually obscure the effects of interactions in this system and to avoid effects of finite geometry. At low carrier density, we find a field-induced transition to an insulator that competes with the FQHE, allowing its observation only in the highest quality samples. We believe that these results will open the door to the physics of FQHE and other collective behaviour in graphene.

839 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare the measured gate dependence of the proximity induced subgap features (multiple Andreev reflections) and of the supercurrent to theoretical predictions, and find that the diffusive junction model yields close quantitative agreement with the results.
Abstract: The Josephson effect and superconducting proximity effect were observed in superconductor-graphene-superconductor (SGS) Josephson junctions with coherence lengths comparable to the distance between the superconducting leads. By comparing the measured gate dependence of the proximity induced subgap features (multiple Andreev reflections) and of the supercurrent to theoretical predictions, we find that the diffusive junction model yields close quantitative agreement with the results. By contrast, predictions of the ballistic SGS model are inconsistent with the data. We show that all SGS devices reported so far, our own as well as those of other groups, fall in the diffusive junction category. This is attributed to substrate induced potential fluctuations due to trapped charges and to the invasiveness of the metallic leads.

252 citations

Journal ArticleDOI
TL;DR: Using scanning tunneling microscopy and Landau level spectroscopy, it is demonstrated that in the presence of a magnetic field the strength of the impurity can be tuned by controlling the occupation of Landau-level states with a gate voltage.
Abstract: We report the observation of an isolated charged impurity in graphene and present direct evidence of the close connection between the screening properties of a 2D electron system and the influence of the impurity on its electronic environment. Using scanning tunneling microscopy and Landau level spectroscopy, we demonstrate that in the presence of a magnetic field the strength of the impurity can be tuned by controlling the occupation of Landau-level states with a gate voltage. At low occupation the impurity is screened, becoming essentially invisible. Screening diminishes as states are filled until, for fully occupied Landau levels, the unscreened impurity significantly perturbs the spectrum in its vicinity. In this regime we report the first observation of Landau-level splitting into discrete states due to lifting the orbital degeneracy.

80 citations

Journal ArticleDOI
TL;DR: In this paper, a general method based on the conformal invariance of two-dimensional magnetotransport is proposed to extract transport coefficients of a fractional quantum Hall state from the two-terminal conductance.
Abstract: Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to $T=10\text{ }\text{K}$. The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we address the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a general method, based on the conformal invariance of two-dimensional magnetotransport, and employ it to analyze the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized $\ensuremath{ u}=1/3$ state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a tool for the studies of quantum transport in suspended graphene and other nanoscale systems.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Journal ArticleDOI
TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Abstract: Graphene devices on standard SiO(2) substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. Although suspending the graphene above the substrate leads to a substantial improvement in device quality, this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2). These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.

6,261 citations

Journal ArticleDOI
TL;DR: Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract: Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

5,600 citations