scispace - formally typeset
Search or ask a question
Author

Ivars Neretnieks

Other affiliations: DECHEMA
Bio: Ivars Neretnieks is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Fracture (geology) & Matrix (geology). The author has an hindex of 44, co-authored 224 publications receiving 7159 citations. Previous affiliations of Ivars Neretnieks include DECHEMA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the accessibility of the rock matrix to radio-nuclides and showed that the diffusion of the nuclides into the rock matrices and their sorption onto the surfaces of the microfissures are the main mechanisms retarding migration from a repository.
Abstract: This paper discusses migration of radionuclides in the bedrock surrounding a repository. Currently available models use either a surface reaction or a bulk reaction concept to describe the retardation of migrating nuclides. The first model assumes that the nuclide reacts only with the surface of the fissures. This implies that the rock matrix is not utilized as a sink. The other model implies that the whole bulk of the rock is accessible to the nuclides. The paper analyzes the accessibility of the rock matrix to the radio-nuclides. The transport mechanisms are shown to be flow of water and nuclides in the fissures and transport of nuclides from the water in the fissures into water in the microfissures of the rock by pore diffusion. The diffusion of the nuclides into the rock matrix and their sorption onto the surfaces of the microfissures are the main mechanisms retarding migration from a repository. The diffusivity of the nuclide may be as important as its sorption equilibrium constant. Diffusivities in the pores and microfissures in such dense rocks as granite under confining pressure of hundreds of bars can be expected to be 6–20% of the diffusivity in water. These data are obtained from electrical resistivity measurements of saltwater-filled granites. Porosity of such granites varies from 0.4 to 0.9%. The apparent diffusivities in the granites will then vary between 0.25 · 10−12/Kdρp and 10 · 10−12/Kdρp m2/s, where Kdρp is the volume equilibrium constant. This varies from the porosity of the rock for nonsorbing species to up to and over 104. For a 100-year contact time a nonsorbing nuclide can be expected to penetrate tens of meters of the rock matrix and a strongly sorbing nuclide with Kdρp larger than 104 will penetrate a few millimeters. The diffusion into the rock matrix can enhance the retardation by many orders of magnitude as compared to retardation by surface reaction in fissures only. The retardation may, on the other hand, be many orders of magnitude smaller than the maximum value that could be obtained if all the rock matrix were accessible. This depends very much on the fissure widths and spacings.

810 citations

Journal ArticleDOI
TL;DR: In this article, the flow and solute transport through a single rough-surfaced fracture were carried out using geostatistical methods, based on a given aperture probability density distribution and a specified spatial correlation length.
Abstract: Calculations for the flow and solute transport through a single rough-surfaced fracture were carried out. The fracture plane was discretized into a square mesh to which variable apertures were assigned. The spatially varying apertures of each single fracture were generated using geostatistical methods, based on a given aperture probability density distribution and a specified spatial correlation length. Constant head boundary conditions were assumed for the flow in the x direction of a single fracture with no flow boundaries in the y direction. The fluid potential at each node of the discretization mesh was computed and the steady state flow rates between all the nodes were obtained. Our calculations showed that fluid flow occurs predominantly in a few preferred paths. Hence, the large range of apertures in the single fracture gives rise to flow channeling. The solute transport was calculated using a particle tracking method. Both the spatial and time variations of tracer breakthrough results are presented. The spatial variation of tracer transport between a line of injection points and a line of observation points are displayed in contour plots which we labeled “transfer matrix.” Our results indicate that such plots can give information on the spatial correlation length of the heterogeneity in the fracture. The tracer breakthrough curve obtained from a line of point measurements is shown to be controlled by the aperture density distribution and is insensitive to statistical realization and spatial correlation length. These results suggest the importance of making line measurements in the laboratory and the field. Sensitivity of our results on parameter variations was also investigated.

370 citations

Journal ArticleDOI
TL;DR: Experimental observations and theoretical studies over the last 10 years or so have demonstrated that flow channeling or preferred flow paths is a common phenomenon in fractured rocks as discussed by the authors, and theoretical efforts to explain or model these observations are summarized.
Abstract: Experimental observations and theoretical studies over the last 10 years or so have demonstrated that flow channeling or preferred flow paths is a common phenomenon in fractured rocks. The reason it has come to the forefront of scientific investigation is the recent interest in predicting solute transport in geological media as part of safety assessment of geologic isolation of nuclear or toxic wastes. Solute transport is much more sensitive to medium heterogeneity than is temperature or pressure. In this paper, experimental observations of tracer transport over distances ranging from centimeters to hundreds of meters are reviewed, and theoretical efforts to explain or model these observations are summarized. Processes that may explain some of the experimental observations without the use of flow-channeling models are discussed. The paper concludes with a discussion of the implications of flow channeling on the practical problems related to contaminant transport in geologic systems.

358 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied radionuclide migration in a natural fissure in a granite core and found that there is substantial diffusion into and sorption in the rock matrix.
Abstract: Radionuclide migration was studied in a natural fissure in a granite core The fissure was oriented parallel to the axis in a cylindrical core 30 cm long and 20 cm in diameter The traced solution was injected at one end of the core and collected at the other Breakthrough curves were obtained for the nonsorbing tracers, tritiated water, and a large-molecular-weight lignosulphonate molecule and for the sorbing tracers, cesium and strontium From the breakthrough curves for the nonsorbing tracers it could be concluded that channeling occurs in the single fissure A ‘dispersion’ model based on channeling is presented The results from the sorbing tracers indicate that there is substantial diffusion into and sorption in the rock matrix Sorption on the surface of the fissure also accounts for a part of the retardation effect of the sorbing species A model which includes the mechanisms of channeling, surface sorption, matrix diffusion, and matrix sorption is presented The experimental breakthrough curves can be fitted fairly well by this model by use of independently obtained data on diffusivities and matrix sorption

248 citations

Journal ArticleDOI
TL;DR: The focus of the modelling has been to quantify the important processes occurring after the methane production phase has ceased, i.e. during the humic phase, and the main conclusion is that higher remobilisation rates of heavy metals due to lowering of pH are not expected for many thousands of years.

195 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the long-term behavior of landfills with respect to changes in oxidation-reduction status is discussed based on theory and model simulations, and it seems that the somewhere postulated enhanced release of accumulated heavy metals would not take place within the time frames of thousands of years.
Abstract: The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobiotic organic compounds). Existing data show high leachate concentrations of all components in the early acid phase due to strong decomposition and leaching. In the long methanogenic phase a more stable leachate, with lower concentrations and a low BOD/COD-ratio, is observed. Generally, very low concentrations of heavy metals are observed. In contrast, the concentration of ammonia does not decrease, and often constitutes a major long-term pollutant in leachate. A broad range of xenobiotic organic compounds is observed in landfill leachate. The long-term behavior of landfills with respect to changes in oxidation-reduction status is discussed based on theory and model simulations. It seems that the somewhere postulated enhanced release of accumulated heavy metals would not take place within the time frames of thousands of years. This is supported by a few laboratory investigations. The existing data and model evaluations indicate that the xenobiotic organic compounds in most cases do not constitute a major long-term problem. This may suggest that ammonia will be of most concern in the long run.

2,122 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze measurements, conceptual pictures, and mathematical models of flow and transport phenomena in fractured rock systems, including water flow, conservative and reactive solutes, and two-phase flow.

1,267 citations

Journal ArticleDOI
TL;DR: In this paper, a dual-porosity model was developed for the purpose of studying variably saturated water flow and solute transport in structured soils or fractured rocks, where water in both pore systems is assumed to be mobile.
Abstract: A one-dimensional dual-porosity model has been developed for the purpose of studying variably saturated water flow and solute transport in structured soils or fractured rocks. The model involves two overlaying continua at the macroscopic level: a macropore or fracture pore system and a less permeable matrix pore system. Water in both pore systems is assumed to be mobile. Variably saturated water flow in the matrix as well as in the fracture pore system is described with the Richards' equation, and solute transport is described with the convection-dispersion equation. Transfer of water and solutes between the two pore regions is simulated by means of first-order rate equations. The mass transfer term for solute transport includes both convective and diffusive components. The formulation leads to two coupled systems of nonlinear partial differential equations which were solved numerically using the Galerkin finite element method. Simulation results demonstrate the complicated nature of solute leaching in structured, unsaturated porous media during transient water flow. Sensitivity studies show the importance of having accurate estimates of the hydraulic conductivity near the surface of soil aggregates or rock matrix blocks. The proposed model is capable of simulating preferential flow situations using parameters which can be related to physical and chemical properties of the medium.

1,109 citations