scispace - formally typeset
Search or ask a question
Author

Ivo Allegrini

Bio: Ivo Allegrini is an academic researcher from National Research Council. The author has contributed to research in topics: Air quality index & Air pollution. The author has an hindex of 25, co-authored 91 publications receiving 2365 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the atmospheric concentrations of gaseous HNO 3, HCl and NH 3 and their relative salts have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China), as part of CAREBEIJING (Campaigns of Air Quality Research in Beijing and Surrounding Region).
Abstract: . The atmospheric concentrations of gaseous HNO 3 , HCl and NH 3 and their relative salts have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China), as part of CAREBEIJING (Campaigns of Air Quality Research in Beijing and Surrounding Region). In this study, annular denuder technique used with integration times of 2 and 24h to collect inorganic and soluble PM 2.5 without interferences from gas–particle and particle–particle interactions. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. Fine particulate Cl − , NH 4 + and SO 4 2− exhibited distinct temporal variations, while fine particulate NO 3 − did not show much variation with respect to season. Daily mean concentrations of fine particulate NH 4 + and SO 4 2− were higher during summer (12.30 μg m −3 and 18.24 μg m −3 , respectively) than during winter (6.51 μg m −3 and 7.50 μg m −3 , respectively). Daily mean concentrations of fine particulate Cl − were higher during winter (2.94 μg m −3 ) than during summer (0.79 μg m −3 ), while fine particulate NO 3 − showed similar both in winter (8.38 μg m −3 ) and in summer (9.62 μg m −3 ) periods. The presence of large amounts of fine particulate NO 3 − even in summer are due to higher local and regional concentrations of NH 3 in the atmosphere available to neutralize H 2 SO 4 and HNO 3 , which is consistent with the observation that the measured particulate species were neutralized. The composition of fine particulate matter indicated the domination of (NH 4 ) 2 SO 4 during winter and summer periods. In addition, the high relative humidity conditions in summer period seemed to dissolve a significant fraction of HNO 3 and NH 3 enhancing fine particulate NO 3 − and NH 4 + in the atmosphere. All measured particulate species showed diurnal similar patterns during the winter and summer periods with higher peaks in the early morning, especially in summer, when humid and stable atmospheric conditions occurred. These diurnal variations were affected by wind direction suggesting regional and local source influences. The fine particulate species were correlated with NO x and PM 2.5 , supporting the hypothesis that traffic may be also an important source of secondary particles.

176 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of atmospheric Hg deposition fluxes with Hg accumulation rates in sediment cores suggests that atmospheric deposition was the major source of Hg entering the lakes system at coring sites, however, important contributions to Lake Ontario sediment cores sites from 1940 to 1970 were likely originated from local point sources.

169 citations

Journal ArticleDOI
TL;DR: The atmospheric concentration of gaseous ammonia has been measured during selected field campaigns from the spring of 2001 to 2002 in the urban area of Rome, at many traffic sites and at an urban background site as discussed by the authors.

159 citations

Journal ArticleDOI
TL;DR: The annular denuder method (ADM) as discussed by the authors was developed to measure several gaseous and aerosol species without sampling artifacts, and it has been applied to the determination of gas phase and particulate matter.

144 citations

Journal ArticleDOI
TL;DR: In this paper, the atmospheric concentrations of gaseous ammonia have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China), these measurements were carried out by means of diffusion annular denuders coated with phosphorous acid.
Abstract: . The atmospheric concentrations of gaseous ammonia have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China). These measurements were carried out by means of diffusion annular denuders coated with phosphorous acid. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. The daily average NH3 concentrations were in the range of 0.20–44.38 μg/m3 and showed regular temporal variations with higher concentrations during summer and with lower during winter. The temporal trends seemed to be largely affected by air temperature because of agricultural sources. No diurnal variability was observed for gaseous NH3 levels in both winter and summer seasons. The highest ammonia value of 105.67 μg/m3 was measured in the early morning during the summer period when stable atmospheric conditions occurred. The diurnal winter and summer trends of ammonia showed a weak dependence on the air temperature and they were affected nearly by wind direction suggesting regional and local source influences. Ammonia was also correlated with the atmospheric mixing in the boundary layer, and, with NOx, CO and PM2.5 air concentrations supporting the hypothesis that the traffic may be also an important source of ammonia in Beijing.

143 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the production, characterization and current statuses of vegetable oil and biodiesel as well as the experimental research work carried out in various countries is presented.

2,891 citations

Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

Journal ArticleDOI
TL;DR: In this article, the authors review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.
Abstract: The European Union has made progress in dealing with municipal wastewater in individual countries and as a corporate entity. However, it intends to make still further and substantial progress over the next 15 years. Currently, the most widely available options in the EU are the agriculture utilization, the waste disposal sites, the land reclamation and restoration, the incineration and other novel uses. The selection of an option on a local basis reflects local or national, cultural, historical, geographical, legal, political and economic circumstances. The degree of flexibility varies from country to country. In any case sludge treatment and disposal should always be considered as an integral part of treatment of wastewater. There is a wide range of other uses for sludge, which exploit its energy or chemical content, namely the thermal processes. The present paper sought to review past and future trends in sludge handling, focusing mainly at thermal processes (e.g. pyrolysis, wet oxidation, gasification) and the utilization of sewage sludge in cement manufacture as a co-fuel.

1,242 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an up-to-date assessment of global mercury emissions from anthropogenic and natural sources, including re-emission processes and primary emissions from natural reservoirs.
Abstract: . This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr−1), artisanal small scale gold mining (400 Mg yr−1), non-ferrous metals manufacturing (310 Mg yr−1), cement production (236 Mg yr−1), waste disposal (187 Mg yr−1) and caustic soda production (163 Mg yr−1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

1,240 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF) for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source.
Abstract: . In this study, 121 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months between April 2009 and January 2010 representing the four seasons. The samples were determined for various compositions, including elements, ions, and organic/elemental carbon. Various approaches, such as chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF), were employed for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source. Our results have shown distinctive seasonality for various aerosol speciations associated with PM2.5 in Beijing. Soil dust waxes in the spring and wanes in the summer. Regarding the secondary aerosol components, inorganic and organic species may behave in different manners. The former preferentially forms in the hot and humid summer via photochemical reactions, although their precursor gases, such as SO2 and NOx, are emitted much more in winter. The latter seems to favorably form in the cold and dry winter. Synoptic meteorological and climate conditions can overwhelm the emission pattern in the formation of secondary aerosols. The PMF model identified six main sources: soil dust, coal combustion, biomass burning, traffic and waste incineration emission, industrial pollution, and secondary inorganic aerosol. Each of these sources has an annual mean contribution of 16, 14, 13, 3, 28, and 26%, respectively, to PM2.5. However, the relative contributions of these identified sources significantly vary with changing seasons. The results of trajectory clustering and the PSCF method demonstrated that regional sources could be crucial contributors to PM pollution in Beijing. In conclusion, we have unraveled some complex aspects of the pollution sources and formation processes of PM2.5 in Beijing. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

1,063 citations