scispace - formally typeset
Search or ask a question
Author

Iyad Katib

Bio: Iyad Katib is an academic researcher from King Abdulaziz University. The author has contributed to research in topics: Big data & Computer science. The author has an hindex of 18, co-authored 86 publications receiving 1494 citations. Previous affiliations of Iyad Katib include University of Missouri–Kansas City & North Carolina State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this paper is to review literature on data fusion for IoT with a particular focus on mathematical methods (including probabilistic methods, artificial intelligence, and theory of belief) and specific IoT environments (distributed, heterogeneous, nonlinear, and object tracking environments).
Abstract: The Internet of Things (IoT) is set to become one of the key technological developments of our times provided we are able to realize its full potential. The number of objects connected to IoT is expected to reach 50 billion by 2020 due to the massive influx of diverse objects emerging progressively. IoT, hence, is expected to be a major producer of big data. Sharing and collaboration of data and other resources would be the key for enabling sustainable ubiquitous environments, such as smart cities and societies. A timely fusion and analysis of big data, acquired from IoT and other sources, to enable highly efficient, reliable, and accurate decision making and management of ubiquitous environments would be a grand future challenge. Computational intelligence would play a key role in this challenge. A number of surveys exist on data fusion. However, these are mainly focused on specific application areas or classifications. The aim of this paper is to review literature on data fusion for IoT with a particular focus on mathematical methods (including probabilistic methods, artificial intelligence, and theory of belief) and specific IoT environments (distributed, heterogeneous, nonlinear, and object tracking environments). The opportunities and challenges for each of the mathematical methods and environments are given. Future developments, including emerging areas that would intrinsically benefit from data fusion and IoT, autonomous vehicles, deep learning for data fusion, and smart cities, are discussed.

294 citations

Journal ArticleDOI
TL;DR: A range of spectrum management techniques for elastic optical networks are reviewed and classified, including offline and online routing and spectrum assignment (RSA), distance-adaptive RSA, fragmentation-aware RSA, traffic grooming, and survivability.

209 citations

Journal ArticleDOI
TL;DR: Preliminary results on three real IoT datasets show that C4.5 and C5.0 have better accuracy, are memory efficient and have relatively higher processing speeds, compared to ANNs and DLANNs, which can provide highly accurate results but are computationally expensive.

161 citations

Journal ArticleDOI
TL;DR: A ubiquitous healthcare framework, UbeHealth, is proposed that leverages edge computing, deep learning,big data, big data, high-performance computing (HPC), and the Internet of Things (IoT) to address the aforementioned challenges.
Abstract: Smart city advancements are driving massive transformations of healthcare, the largest global industry. The drivers include increasing demands for ubiquitous, preventive, and personalized healthcare, to be provided to the public at reduced risks and costs. Mobile cloud computing could potentially meet the future healthcare demands by enabling anytime, anywhere capture and analyses of patients’ data. However, network latency, bandwidth, and reliability are among the many challenges hindering the realization of next-generation healthcare. This paper proposes a ubiquitous healthcare framework, UbeHealth, that leverages edge computing, deep learning, big data, high-performance computing (HPC), and the Internet of Things (IoT) to address the aforementioned challenges. The framework enables an enhanced network quality of service using its three main components and four layers. Deep learning, big data, and HPC are used to predict network traffic, which in turn are used by the Cloudlet and network layers to optimize data rates, data caching, and routing decisions. Application protocols of the traffic flows are classified, enabling the network layer to meet applications’ communication requirements better and to detect malicious traffic and anomalous data. Clustering is used to identify the different kinds of data originating from the same application protocols. A proof of concept UbeHealth system has been developed based on the framework. A detailed literature review is used to capture the design requirements for the proposed system. The system is described in detail including the algorithmic implementation of the three components and four layers. Three widely used data sets are used to evaluate the UbeHealth system.

146 citations

Journal ArticleDOI
TL;DR: A personalised Ubiquitous eTeaching & eLearning (UTiLearn) framework that leverages Internet of Things, big data, supercomputing, and deep learning to provide enhanced development, management, and delivery of teaching and learning in smart society settings is proposed.
Abstract: The education industry around the globe is undergoing major transformations. Organizations, such as Coursera are advancing new business models for education. A number of major industries have dropped degrees from the job requirements. While the economics of higher education institutions are under threat in a continuing gloomy global economy, digital and lifelong learners are increasingly demanding new teaching and learning paradigms from educational institutions. There is an urgent need to transform teaching and learning landscape in order to drive global economic growth. The use of distance eTeaching and eLearning (DTL) is on the rise among digital natives alongside our evolution toward smart societies. However, the DTL systems today lack the necessary sophistication due to several challenges including data analysis and management, learner-system interactivity, system cognition, resource planning, agility, and scalability. This paper proposes a personalised Ubiquitous eTeaching & eLearning (UTiLearn) framework that leverages Internet of Things, big data, supercomputing, and deep learning to provide enhanced development, management, and delivery of teaching and learning in smart society settings. A proof of concept UTiLearn system has been developed based on the framework. A detailed design, implementation, and evaluation of the UTiLearn system, including its five components, are provided using 11 widely used datasets.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain.
Abstract: In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.

903 citations

Journal ArticleDOI
TL;DR: A detailed review of the security-related challenges and sources of threat in the IoT applications is presented and four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.
Abstract: The Internet of Things (IoT) is the next era of communication. Using the IoT, physical objects can be empowered to create, receive, and exchange data in a seamless manner. Various IoT applications focus on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. The existing and upcoming IoT applications are highly promising to increase the level of comfort, efficiency, and automation for the users. To be able to implement such a world in an ever-growing fashion requires high security, privacy, authentication, and recovery from attacks. In this regard, it is imperative to make the required changes in the architecture of the IoT applications for achieving end-to-end secure IoT environments. In this paper, a detailed review of the security-related challenges and sources of threat in the IoT applications is presented. After discussing the security issues, various emerging and existing technologies focused on achieving a high degree of trust in the IoT applications are discussed. Four different technologies, blockchain, fog computing, edge computing, and machine learning, to increase the level of security in IoT are discussed.

800 citations

Journal ArticleDOI
TL;DR: This paper constitutes the first holistic tutorial on the development of ANN-based ML techniques tailored to the needs of future wireless networks and overviews how artificial neural networks (ANNs)-based ML algorithms can be employed for solving various wireless networking problems.
Abstract: In order to effectively provide ultra reliable low latency communications and pervasive connectivity for Internet of Things (IoT) devices, next-generation wireless networks can leverage intelligent, data-driven functions enabled by the integration of machine learning (ML) notions across the wireless core and edge infrastructure. In this context, this paper provides a comprehensive tutorial that overviews how artificial neural networks (ANNs)-based ML algorithms can be employed for solving various wireless networking problems. For this purpose, we first present a detailed overview of a number of key types of ANNs that include recurrent, spiking, and deep neural networks, that are pertinent to wireless networking applications. For each type of ANN, we present the basic architecture as well as specific examples that are particularly important and relevant wireless network design. Such ANN examples include echo state networks, liquid state machine, and long short term memory. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality applications over wireless networks as well as edge computing and caching. For each individual application, we present the main motivation for using ANNs along with the associated challenges while we also provide a detailed example for a use case scenario and outline future works that can be addressed using ANNs. In a nutshell, this paper constitutes the first holistic tutorial on the development of ANN-based ML techniques tailored to the needs of future wireless networks.

666 citations

Journal ArticleDOI
TL;DR: A tutorial that covers the key aspects of elastic optical networks, and explores the experimental demonstrations that have tested the functionality of the elastic optical network, along with the research challenges and open issues posed by flexible networks.
Abstract: Flexgrid technology is now considered to be a promising solution for future high-speed network design. In this context, we need a tutorial that covers the key aspects of elastic optical networks. This tutorial paper starts with a brief introduction of the elastic optical network and its unique characteristics. The paper then moves to the architecture of the elastic optical network and its operation principle. To complete the discussion of network architecture, this paper focuses on the different node architectures, and compares their performance in terms of scalability and flexibility. Thereafter, this paper reviews and classifies routing and spectrum allocation (RSA) approaches including their pros and cons. Furthermore, various aspects, namely, fragmentation, modulation, quality-of-transmission, traffic grooming, survivability, energy saving, and networking cost related to RSA, are presented. Finally, the paper explores the experimental demonstrations that have tested the functionality of the elastic optical network, and follows that with the research challenges and open issues posed by flexible networks.

547 citations