scispace - formally typeset
Search or ask a question
Author

J. A. Chevary

Bio: J. A. Chevary is an academic researcher from University of Toronto. The author has contributed to research in topics: Orbital-free density functional theory & Density functional theory. The author has an hindex of 5, co-authored 5 publications receiving 18843 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.
Abstract: Generalized gradient approximations (GGA's) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang have developed a GGA based on real-space cutoff of the spurious long-range components of the second-order gradient expansion for the exchange-correlation hole. We have found that this density functional performs well in numerical tests for a variety of systems: (1) Total energies of 30 atoms are highly accurate. (2) Ionization energies and electron affinities are improved in a statistical sense, although significant interconfigurational and interterm errors remain. (3) Accurate atomization energies are found for seven hydrocarbon molecules, with a rms error per bond of 0.1 eV, compared with 0.7 eV for the LSD approximation and 2.4 eV for the Hartree-Fock approximation. (4) For atoms and molecules, there is a cancellation of error between density functionals for exchange and correlation, which is most striking whenever the Hartree-Fock result is furthest from experiment. (5) The surprising LSD underestimation of the lattice constants of Li and Na by 3--4 % is corrected, and the magnetic ground state of solid Fe is restored. (6) The work function, surface energy (neglecting the long-range contribution), and curvature energy of a metallic surface are all slightly reduced in comparison with LSD. Taking account of the positive long-range contribution, we find surface and curvature energies in good agreement with experimental or exact values. Finally, a way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects.

17,848 citations

Journal ArticleDOI
TL;DR: The Harbola-Sahni exchange potential is the work needed to move an electron against the electric field of its hole charge distribution as discussed by the authors, which is a more physically correct version of the Slater potential, one that is better suited for molecular and solid-state applications.
Abstract: The Harbola-Sahni exchange potential is the work needed to move an electron against the electric field of its hole charge distribution. We prove that it is not the exact exchange potential of density-functional theory, by showing that it yields the wrong second-order gradient expansion in the slowly varying limit. But we also discover that it yields the correct local-density approximation. Thus the Harbola-Sahni potential is a more physically correct version of the Slater potential, one that is better suited for molecular and solid-state applications. As a step in our derivation, we present the third-order gradient expansion of the exchange hole density, and discuss its structure. We also describe a new version of the Harbola-Sahni potential which corrects its path dependence. The exact exchange potential for an atom is given by the optimized potential model (OPM) of Talman and Shadwick. By using enhanced numerics, we confirm that the OPM potential satisfies the Levy-Perdew virial relation and exhibits correct -1/r behavior at large r. Numerical calculations also show that the intershell maxima in the exact exchange potential are needed to lower the total energy. These ``bumps'' are missing from the Harbola-Sahni and Slater potentials.

85 citations

Journal ArticleDOI
TL;DR: It is shown that generalized gradient approximations for exchange only quite generally can not simultaneously reproduce both the asymptotic forms of the exchange energy density and the exchange potential of finite systems, and it is concluded that GGAs by their very concept are not suited to reproduce these asymPTotic properties of infinite systems.
Abstract: It is shown that generalized gradient approximations (GGAs) for exchange only, due to their very limited form, quite generally can not simultaneously reproduce both the asymptotic forms of the exchange energy density and the exchange potential of finite systems. Furthermore, mechanisms making GGAs formally approach at least one of these asymptotic forms do not improve the corresponding quantity in the relevant part of the asymptotic regime of atoms. By constructing a GGA which leads to superior atomic exchange energies compared to all GGAs heretofore but does not reproduce the asymptotic form of the exact exchange energy density it is demonstrated that this property is not important for obtaining extremely accurate atomic exchange energies. We conclude that GGAs by their very concept are not suited to reproduce these asymptotic properties of finite systems. As a byproduct of our discussion we present a particularly simple and direct proof of the well known asymptotic structure of the exchange potential of finite spherical systems.

73 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown how the Pauli-principle restrictions eliminate the need for a Cauchy principal-part interpretation of the integral representation for the wave-vector-dependent exchange contribution to the static screening function of an electron gas.
Abstract: It is shown how the Pauli-principle restrictions eliminate the need for a Cauchy principal-part interpretation of the integral representation for the wave-vector-dependent exchange contribution to the static screening function of an electron gas. This modified expression is accurately evaluated, removing the anomalous behavior obtained by Antoniewicz and Kleinman, while confirming their conclusion regarding the coefficient of the gradient expansion for exchange-only density-functional theory.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Abstract: Despite the remarkable thermochemical accuracy of Kohn–Sham density‐functional theories with gradient corrections for exchange‐correlation [see, for example, A. D. Becke, J. Chem. Phys. 96, 2155 (1992)], we believe that further improvements are unlikely unless exact‐exchange information is considered. Arguments to support this view are presented, and a semiempirical exchange‐correlation functional containing local‐spin‐density, gradient, and exact‐exchange terms is tested on 56 atomization energies, 42 ionization potentials, 8 proton affinities, and 10 total atomic energies of first‐ and second‐row systems. This functional performs significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.

87,732 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

Journal ArticleDOI
TL;DR: The basics of the suject are looked at, a brief review of the theory is given, examining the strengths and weaknesses of its implementation, and some of the ways simulators approach problems are illustrated through a small case study.
Abstract: First-principles simulation, meaning density-functional theory calculations with plane waves and pseudopotentials, has become a prized technique in condensed-matter theory. Here I look at the basics of the suject, give a brief review of the theory, examining the strengths and weaknesses of its implementation, and illustrating some of the ways simulators approach problems through a small case study. I also discuss why and how modern software design methods have been used in writing a completely new modular version of the CASTEP code.

9,350 citations

Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: In this paper, scaling factors for fundamental vibrational frequencies, low-frequency vibrations, zero-point vibrational energies (ZPVE), and thermal contributions to enthalpy and entropy from harmonic frequencies determined at 19 levels of theory have been derived through a least-squares approach.
Abstract: Scaling factors for obtaining fundamental vibrational frequencies, low-frequency vibrations, zero-point vibrational energies (ZPVE), and thermal contributions to enthalpy and entropy from harmonic frequencies determined at 19 levels of theory have been derived through a least-squares approach. Semiempirical methods (AM1 and PM3), conventional uncorrelated and correlated ab initio molecular orbital procedures [Hartree−Fock (HF), Moller−Plesset (MP2), and quadratic configuration interaction including single and double substitutions (QCISD)], and several variants of density functional theory (DFT: B-LYP, B-P86, B3-LYP, B3-P86, and B3-PW91) have been examined in conjunction with the 3-21G, 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-311G(d,p), and 6-311G(df,p) basis sets. The scaling factors for the theoretical harmonic vibrational frequencies were determined by a comparison with the corresponding experimental fundamentals utilizing a total of 1066 individual vibrations. Scaling factors suitable for low-frequency vib...

6,287 citations