scispace - formally typeset
Search or ask a question
Author

J. A. Clarke

Other affiliations: Cockcroft Institute
Bio: J. A. Clarke is an academic researcher from Daresbury Laboratory. The author has contributed to research in topics: Undulator & International Linear Collider. The author has an hindex of 14, co-authored 76 publications receiving 1098 citations. Previous affiliations of J. A. Clarke include Cockcroft Institute.


Papers
More filters
DOI
12 Aug 2016
TL;DR: The Compact Linear Collider (CLIC) is a multi-teV high-luminosity linear e+e-collider under development as discussed by the authors, which is foreseen to be built and operated in a staged approach with three center-of-mass energy stages ranging from a few hundred GeV up to 3 TeV.
Abstract: The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.

182 citations

Journal ArticleDOI
TL;DR: This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime and provides newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications.
Abstract: This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.

178 citations

Posted ContentDOI
TL;DR: The Compact Linear Collider (CLIC) as mentioned in this paper is a TeV-scale high-luminosity linear $e+e^-$ collider under development at CERN, which uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam.
Abstract: The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear $e^+e^-$ collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years.

143 citations

Journal ArticleDOI
Shinji Machida1, Roger Barlow2, J. S. Berg3, N. Bliss4, Rachael Buckley5, Rachael Buckley4, J. A. Clarke4, J. A. Clarke5, M. K. Craddock6, M. K. Craddock7, R. D’Arcy8, Rob Edgecock1, Rob Edgecock2, James Garland5, James Garland9, Y. Giboudot5, Y. Giboudot10, P. Goudket5, P. Goudket4, S. Griffiths11, S. Griffiths4, C. Hill4, S. F. Hill4, S. F. Hill5, K. M. Hock5, K. M. Hock12, DJ Holder5, DJ Holder12, M. Ibison5, M. Ibison12, Frank Jackson5, Frank Jackson4, Steven Jamison5, Steven Jamison4, Carol Johnstone13, J. K. Jones5, J. K. Jones4, L. B. Jones5, L. B. Jones4, A. Kalinin4, A. Kalinin5, Eberhard Keil14, David Kelliher1, I. W. Kirkman5, I. W. Kirkman12, Shane Koscielniak6, Kiril Marinov5, Kiril Marinov4, N. Marks4, N. Marks12, N. Marks5, B. Martlew4, P. A. McIntosh4, P. A. McIntosh5, Julian McKenzie4, Julian McKenzie5, Francois Méot3, K. J. Middleman5, K. J. Middleman4, Andrew Moss5, Andrew Moss4, Bruno Muratori5, Bruno Muratori4, J. Orrett5, J. Orrett4, Hywel Owen5, Hywel Owen9, Jaroslaw Pasternak1, Jaroslaw Pasternak15, Ken Peach16, M.W. Poole4, M.W. Poole5, Y-N. Rao6, Yuri Saveliev4, Yuri Saveliev5, D. J. Scott4, D. J. Scott5, D. J. Scott13, Suzanne Sheehy16, Suzanne Sheehy1, Ben Shepherd5, Ben Shepherd4, R. J. Smith4, R. J. Smith5, S.L. Smith5, S.L. Smith4, Dejan Trbojevic3, Stephan I. Tzenov17, Thomas Weston4, Alan Wheelhouse4, Alan Wheelhouse5, Peter Williams4, Peter Williams5, Andrzej Wolski5, Andrzej Wolski12, Takeichiro Yokoi16 
TL;DR: In this paper, the first non-scaling fixed-field alternating-gradient (FFAG) accelerators are reported, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18 MeV/c, and acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed.
Abstract: In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a ‘scaling’ principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12–18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

83 citations

Journal ArticleDOI
20 Jul 2017
TL;DR: The European Plasma Research Accelerator with eXcellence In Applications (EuPRAXIA) as mentioned in this paper is a European facility with multi-GeV electron beams using plasma as the acceleration medium for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing.
Abstract: The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe how X-ray free-electron lasers work, discuss the range of new sources being developed worldwide, and consider how such Xray sources may develop over the coming years.
Abstract: With intensities 108–1010 times greater than other laboratory sources, X-ray free-electron lasers are currently opening up new frontiers across many areas of science. In this Review we describe how these unconventional lasers work, discuss the range of new sources being developed worldwide, and consider how such X-ray sources may develop over the coming years.

666 citations

Journal ArticleDOI
TL;DR: The Large Hadron Electron Collider (LHeC) as discussed by the authors was designed to achieve an integrated luminosity of O(100 ),fb$^{-1}, which is the cleanest high resolution microscope of mankind.
Abstract: This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100)\,fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

553 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations

Journal ArticleDOI
TL;DR: The Large Hadron Electron Collider (LHeC) as discussed by the authors is a new collider for particle and nuclear physics, in which a newly built electron beam of up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC.
Abstract: The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron's and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for both versions, along with technical design considerations on the interaction region, magnets and further components, together with a design study for a high acceptance detector. Civil engineering and installation studies are presented for the accelerator and the detector. The LHeC can be built within a decade and thus be operated while the LHC runs in its high-luminosity phase. It thus represents a major opportunity for progress in particle physics exploiting the investment made in the LHC.

518 citations

Journal Article
TL;DR: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented, and a mixture of helium and trace amounts of nitrogen gas was used.
Abstract: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

382 citations