scispace - formally typeset
Search or ask a question
Author

J. A. Harrison

Bio: J. A. Harrison is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 347 citations.

Papers
More filters
Book
01 Jan 1997
TL;DR: In this paper, a major work covering the breeding and non-breeding birds of the Southern African sub-region is presented, which sets new standards in its scope and in its methods, for setting a measured baseline against which to judge environmental trends across the great range of southern Africa.
Abstract: This is a major work covering the breeding and non-breeding birds of the Southern African sub-region. Published in two volumes, Volume One includes introductory chapters describing methodology and the 'avi'-geography of the region, with habitat photos, and coverage of the non-passerines, whilst Volume Two covers the passerines. Some 900 species are covered in total, including 200 vagrants, with detailed species accounts, maps and statistics for at least 500 species. Conservation issues are discussed for most species. '...sets new standards in its scope and in its methods...it will come to be valued ever more as years go by, for setting a measured baseline against which to judge environmental trends across the great range of southern Africa.' - Colin Bibby, "BirdLife International".

347 citations


Cited by
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations

Journal ArticleDOI
TL;DR: A general framework for characterizing the ecological and societal consequences of biodiversity loss and applying it to the global avifauna is presented and projections indicate that by 2100, 6–14% of all bird species will be extinct, and 7–25% (28–56% on oceanic islands) will be functionally extinct.
Abstract: We present a general framework for characterizing the ecological and societal consequences of biodiversity loss and applying it to the global avifauna. To investigate the potential ecological consequences of avian declines, we developed comprehensive databases of the status and functional roles of birds and a stochastic model for forecasting change. Overall, 21% of bird species are currently extinction-prone and 6.5% are functionally extinct, contributing negligibly to ecosystem processes. We show that a quarter or more of frugivorous and omnivorous species and one-third or more of herbivorous, piscivorous, and scavenger species are extinction-prone. Furthermore, our projections indicate that by 2100, 6–14% of all bird species will be extinct, and 7–25% (28–56% on oceanic islands) will be functionally extinct. Important ecosystem processes, particularly decomposition, pollination, and seed dispersal, will likely decline as a result.

763 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a global framework for the next step of strategically expanding the network to cover mammals, amphibians, freshwater turtles and tortoises, and globally threatened birds.
Abstract: Protected areas are the single most important conservation tool. The global protected-area network has grown substantially in recent decades, now occupying 11.5% of Earth's land surface, but such growth has not been strategically aimed at maximizing the coverage of global biodiversity. In a previous study, we demonstrated that the global network is far from complete, even for the representation of terrestrial vertebrate species. Here we present a first attempt to provide a global framework for the next step of strategically expanding the network to cover mammals, amphibians, freshwater turtles and tortoises, and globally threatened birds. We identify unprotected areas of the world that have remarkably high conservation value (irreplaceability) and are under serious threat. These areas concentrate overwhelmingly in tropical and subtropical moist forests, particularly on tropical mountains and islands. The expansion of the global protected-area network in these regions is urgently needed to prevent the loss of unique biodiversity.

584 citations

Journal ArticleDOI
TL;DR: This work examines avian range maps of 834 bird species in conjunction with geographically extensive survey data sets on two continents to determine the spatial resolutions at which range-map data actually characterize species occurrences and patterns of species richness.
Abstract: Most studies examining continental-to-global patterns of species richness rely on the overlaying of extent-of-occurrence range maps. Because a species does not occur at all locations within its geographic range, range-map-derived data represent actual distributional patterns only at some relatively coarse and undefined resolution. With the increasing availability of high-resolution climate and land-cover data, broad-scale studies are increasingly likely to estimate richness at high resolutions. Because of the scale dependence of most ecological phenomena, a significant mismatch between the presumed and actual scale of ecological data may arise. This may affect conclusions regarding basic drivers of diversity and may lead to errors in the identification of diversity hotspots. Here, we examine avian range maps of 834 bird species in conjunction with geographically extensive survey data sets on two continents to determine the spatial resolutions at which range-map data actually characterize species occurrences and patterns of species richness. At resolutions less than 2° (≈200 km), range maps overestimate the area of occupancy of individual species and mischaracterize spatial patterns of species richness, resulting in up to two-thirds of biodiversity hotspots being misidentified. The scale dependence of range-map accuracy poses clear limitations on broad-scale ecological analyses and conservation assessments. We suggest that range-map data contain less information than is generally assumed and provide guidance about the appropriate scale of their use.

576 citations