scispace - formally typeset
Search or ask a question
Author

J. A. van Alsté

Bio: J. A. van Alsté is an academic researcher from University of Twente. The author has contributed to research in topics: Nerve fiber & Hemopump. The author has an hindex of 6, co-authored 11 publications receiving 711 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Linear phase filtering is proposed for the removal of baseline wander and power-line frequency components in electrocardiograms with a considerably reduced number of impulse response coefficients.
Abstract: Linear phase filtering is proposed for the removal of baseline wander and power-line frequency components in electrocardiograms. In order to reduce the large number of computations involved in the digital filtering that are necessary, the desired filter spectrum was defined periodically. Making use of the property that the spectrum period is 50 Hz, the spectrum can be realized with a considerably reduced number of impulse response coefficients. This, in combination with the necessary impulse response symmetry, leads to a reduction in the number of multiplications per output sample by a factor of 10. A suitable impulse response is designed with a pass-band ripple of less than 0.5 dB and a high stop-band attenuation. The applicability is demonstrated by applying the filtering to exercise electrocardiograms.

365 citations

Journal ArticleDOI
TL;DR: It is shown that, assuming rigid-body dynamics and simple hinge joints, relative angles can be calculated without integration, thereby solving the problem of integration drift normally associated with accelerometry.

179 citations

Journal ArticleDOI
TL;DR: Simulations showed that the diameter dependence of nerve fiber recruitment is influenced by the electrode geometry, and the volume conduction model of the stimulated nerve incorporates both inhomogeneities and anisotropy within the nerve.
Abstract: A model of nerve stimulation for control of muscle contraction and ensuing isometrical muscle force has been developed and implemented in a simulation algorithm. A description of nerve fiber excitation was obtained using probability distributions of a number of excitation parameters. The volume conduction model of the stimulated nerve incorporates both inhomogeneities and anisotropy within the nerve. The nerve geometry was assumed to be cylindrically symmetric. The model of the nerve fiber excitation mechanism was based on that of D.R. McNeal (1976), using the Frankenhaeuser-Huxley equations. Simulations showed that the diameter dependence of nerve fiber recruitment is influenced by the electrode geometry. >

72 citations

Journal ArticleDOI
TL;DR: The relationship between nerve stimulation, pulse amplitude and isometric muscle force was measured to investigate recruitment of motor units and indicated that small overlap of recruited motor unit groups occurred more often for intrafascicular than for extraneural electrodes.
Abstract: The relationship between nerve stimulation, pulse amplitude and isometric muscle force was measured to investigate recruitment of motor units. Force addition experiments were performed to obtain insight in the intersection of motor unit groups recruited by different electrodes. Intrafascicular and extraneural multielectrode configurations were used for nerve stimulation. Experiments were performed on rats. The common peroneal nerve was stimulated and the forces of the tibial anterior and extensor digitorum longus muscles were measured isometrically. Recruitment was more stable for intrafascicular electrodes than for extraneural electrodes. Especially for intrafascicular electrodes no strict inverse recruitment was observed. Force addition experiments indicated that small overlap of recruited motor unit groups occurred more often for intrafascicular than for extraneural electrodes.

63 citations

Journal ArticleDOI
TL;DR: The model predicts recruitment probability to increase for increasing nerve-fibre diameter in the entire, or almost the entire range of stimulation pulse-amplitudes in all simulated cases, which implies an inverse order of recruitment compared to the physiological order.
Abstract: The dependency of excitation of myelinated nerve fibres on nerve-fibre diameter, and the geometrical spread of recruited nerve fibres in the fascicle during artificial nerve simulations were investigated by varying parameters of a simulation model presented by P.H. Veltink et al. (ibid., vol.35, p.69-75, 1988). The model predicts that fascicle conductivities and the connective tissue sheath surrounding the fascicle, i.e., the extraneural tissue, together with the radius of the fascicle and the thickness of the connective tissue sheath, influence both recruitment order and geometrical spread of recruited motoneuron fibres in the fascicle. The model predicts recruitment probability to increase for increasing nerve-fibre diameter in the entire, or almost the entire range of stimulation pulse-amplitudes in all simulated cases. In a probabilistic sense, this implies an inverse order of recruitment compared to the physiological order. >

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The noise sensitivities of nine different QRS detection algorithms were measured for a normal, single-channel, lead-II, synthesized ECG corrupted with five different types of synthesized noise: electromyographic interference, 60-Hz power line interference, baseline drift due to respiration, abrupt baseline shift, and a composite noise constructed from all of the other noise types.
Abstract: The noise sensitivities of nine different QRS detection algorithms were measured for a normal, single-channel, lead-II, synthesized ECG corrupted with five different types of synthesized noise: electromyographic interference, 60-Hz power line interference, baseline drift due to respiration, abrupt baseline shift, and a composite noise constructed from all of the other noise types. The percentage of QRS complexes detected, the number of false positives, and the detection delay were measured. None of the algorithms were able to detect all QRS complexes without any false positives for all of the noise types at the highest noise level. Algorithms based on amplitude and slope had the highest performance for EMG-corrupted ECG. An algorithm using a digital filter had the best performance for the composite-noise-corrupted data. >

1,083 citations

Journal ArticleDOI
16 Feb 2012-Sensors
TL;DR: The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography, which are expected to play an increasingly important role in clinical applications.
Abstract: Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

926 citations

Journal ArticleDOI
TL;DR: Several adaptive filter structures are proposed for noise cancellation and arrhythmia detection and an adaptive recurrent filter structure is proposed for acquiring the impulse response of the normal QRS complex.
Abstract: Several adaptive filter structures are proposed for noise cancellation and arrhythmia detection. The adaptive filter essentially minimizes the mean-squared error between a primary input, which is the noisy electrocardiogram (ECG), and a reference input, which is either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Different filter structures are presented to eliminate the diverse forms of noise: baseline wander, 60 Hz power line interference, muscle noise, and motion artifact. An adaptive recurrent filter structure is proposed for acquiring the impulse response of the normal QRS complex. The primary input of the filter is the ECG signal to be analyzed, while the reference input is an impulse train coincident with the QRS complexes. This method is applied to several arrhythmia detection problems: detection of P-waves, premature ventricular complexes, and recognition of conduction block, atrial fibrillation, and paced rhythm. >

902 citations

Journal ArticleDOI
TL;DR: The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch).
Abstract: Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed, and areas requiring further research for sensory substitution systems to become more practical are suggested. >

823 citations

Journal ArticleDOI
TL;DR: A critical overview of the peripheral interfaces available and trace their use from research to clinical application in controlling artificial and robotic prostheses is provided.
Abstract: Considerable scientific and technological efforts have been devoted to develop neuroprostheses and hybrid bionic systems that link the human nervous system with electronic or robotic prostheses, with the main aim of restoring motor and sensory functions in disabled patients. A number of neuroprostheses use interfaces with peripheral nerves or muscles for neuromuscular stimulation and signal recording. Herein, we provide a critical overview of the peripheral interfaces available and trace their use from research to clinical application in controlling artificial and robotic prostheses. The first section reviews the different types of non-invasive and invasive electrodes, which include surface and muscular electrodes that can record EMG signals from and stimulate the underlying or implanted muscles. Extraneural electrodes, such as cuff and epineurial electrodes, provide simultaneous interface with many axons in the nerve, whereas intrafascicular, penetrating, and regenerative electrodes may contact small groups of axons within a nerve fascicle. Biological, technological, and material science issues are also reviewed relative to the problems of electrode design and tissue injury. The last section reviews different strate- gies for the use of information recorded from peripheral interfaces and the current state of control neuroprostheses and hybrid bionic systems.

802 citations