scispace - formally typeset
Search or ask a question
Author

J. Arroyo

Bio: J. Arroyo is an academic researcher from University of Zaragoza. The author has contributed to research in topics: Combustion & Spark-ignition engine. The author has an hindex of 9, co-authored 14 publications receiving 311 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the results of the tests carried out in a naturally aspirated vehicle spark ignition engine fueled with different hydrogen and methane blends were presented, showing that the best balance between thermal efficiency and pollutant emissions was observed with the 30% hydrogen and 70% methane fuel blend.

76 citations

Journal ArticleDOI
J. Arroyo1, F. Moreno1, M. Muñoz1, C. Monné1, N. Bernal1 
30 Jan 2014-Fuel
TL;DR: In this paper, a spark-ignition engine with two synthetic gases obtained from catalytic decomposition of biogas is compared with those obtained when the engine was fueled with gasoline, methane and with the Biogas from which synthetic gases are extracted.

64 citations

Journal ArticleDOI
15 Dec 2018-Fuel
TL;DR: In this article, the authors tested the behavior of sunflower biodiesel in a diesel engine after being treated with a natural antioxidant additive produced from bio-oil extraction (final dosage of biooil compounds in doped biodiesel of 1.9wt%).

61 citations

Journal ArticleDOI
TL;DR: In this article, the combustion characteristics of a naturally aspirated spark ignition engine, intended for installation in vehicles, fueled with different hydrogen and methane blends, were analyzed in a wide range of speeds at equivalence ratios of 1, 0.8 and 0.7 and at full load.

52 citations

Journal ArticleDOI
TL;DR: In this article, the experimental results of two series of tests developed in a gasoline spark ignition engine fueled with synthetic gases obtained from catalytic decomposition of biogas were presented.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle and focuses on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Abstract: Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.

363 citations

Journal ArticleDOI
TL;DR: In this paper, a review of 1660 patents related to biodiesel production were reviewed and grouped into five categories depending on whether they related to starting materials, pre-treatment methods, catalysts, reactors and processing methods or testing methods.
Abstract: Biodiesel is a renewable fuel made from vegetable oils and animal fats. Compared with fossil fuels, it has the potential to alleviate environmental pressures and achieve sustainable development. In this paper, 1660 patents related to biodiesel production were reviewed. They were published between January 1999 and July 2018 and were retrieved from the Derwent Innovation patent database. The patents were grouped into five categories depending on whether they related to starting materials, pre-treatment methods, catalysts, reactors and processing methods, or testing methods. Their analysis shows that the availability of biodiesel starting materials depends on climate, geographical location, local soil conditions, and local agricultural practices. Starting materials constitute 75% of overall production costs and, therefore, it is crucial to select the best feedstock. Pre-treatment of feedstock can improve its suitability for processing and increase extraction effectiveness and oil yield. Catalysts can enhance the solubility of alcohol, leading to higher reaction rates, faster biodiesel production processes, and lower biodiesel production costs. Moreover, the apparatus and processes used strongly affect the oil yield and quality, and production cost. In order to be commercialized and marketed, biodiesel should pass either the American Society for Testing and Materials (ASTM) standards or European Standards (EN). Due to increases in environmental awareness, it is likely that the number of published patents on biodiesel production will remain stable or even increase.

289 citations

Journal ArticleDOI
TL;DR: In this article, previous researcher's development on hydrogen as a possible major fuel of the future has been studied thoroughly and the acceptability of hydrogen technology depends on the knowledge and awareness of the hydrogen benefits towards environment and human life.
Abstract: As hydrogen fuel cell vehicles move from manifestation to commercialization, the users expect safe, convenient and customer-friendly fuelling. Hydrogen quality affects fuel cell stack performance and lifetime, as well as other factors such as valve operation. In this paper, previous researcher's development on hydrogen as a possible major fuel of the future has been studied thoroughly. Hydrogen is one of the energy carriers which can replace fossil fuel and can be used as fuel in an internal combustion engines and as a fuel cell in vehicles. To use hydrogen as a fuel of internal combustion engine, engine design should be considered for avoiding abnormal combustion. As a result it can improve engine efficiency, power output and reduce NOx emissions. The emission of fuel cell is low as compared to conventional vehicles but as penalty, fuel cell vehicles need additional space and weight to install the battery and storage tank, thus increases it production cost. The production of hydrogen can be ‘carbon-free’ only if it is generated by employing genuinely carbon-free renewable energy sources. The acceptability of hydrogen technology depends on the knowledge and awareness of the hydrogen benefits towards environment and human life. Recent study shows that people still do not have the sufficient information of hydrogen.

235 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art and perspectives for catalytic biodiesel production and assesses the critical operational variables that influence biodiesel synthesis along with the technological solutions for sustainable implementation of the process.
Abstract: Biodiesel is one of the potential alternative energy sources that can be derived from renewable and low-grade origin through different processes. One of the processes is alcoholysis or transesterification in the presence of a suitable catalyst. The catalyst can be either homogeneous or heterogeneous. This article reviews various catalysts used for biodiesel production to date, presents the state of the art of types of catalysts and compares their suitability and associated challenges in the transesterification process. Biodiesel production using homogeneous and heterogeneous catalysis has been studied extensively and novel heterogeneous catalysts are being continuously investigated. Homogeneous catalysts are generally efficient in converting biodiesel with low free fatty acid (FFA) and water containing single-origin feedstock. Heterogeneous catalysts, on the other hand, provide superior activity, range of selectivity, good FFA and water adaptability. The quantity and strengths of active acid or basic sites control these properties. Some of the heterogeneous catalysts such as zirconia and zeolite-based catalysts can be used as both basic and acidic catalyst by suitable alteration. Heterogeneous catalysts from waste and biocatalysts play an essential role in attaining a sustainable alternative to traditional homogeneous catalysts for biodiesel production. Recently, high catalytic efficiency at mild operating conditions has drawn attention to nanocatalysts. This review evaluates the state of the art and perspectives for catalytic biodiesel production and assesses the critical operational variables that influence biodiesel production along with the technological solutions for sustainable implementation of the process.

206 citations

Journal ArticleDOI
TL;DR: A review of the literature available concerning the energy balance of internal combustion engines operating on alternative fuels can be found in this paper, where the basic energy balance theory has been discussed in details along with the variations in energy balance approaches and terms.
Abstract: This paper reviews the literature available concerning the energy balance of internal combustion engines operating on alternative fuels. Global warming and energy crisis are among the most important issues that threaten the peaceful existence of the man-kind. More usage of alternative fuels and energy loss minimization from automotive engines can be an effective solution to this issue. The energy balance analysis gives useful information on the distribution of supplied fuel energy in the engine systems and identifies the avoidable losses of the real engine process with respect to ideal process. It is a very widely used tool, mostly used for the layout of the engine components. The basic energy balance theory has been discussed in details along with the variations in energy balance approaches and terms. The wall energy loss may vary to a great extent depending on the selection of heat transfer correlations. The theoretical energy balance also explored in this paper with help of thermodynamic models. There are some significant variations observed in energy balance when the engine operating fuel is changed and devices like turbocharger, supercharger etc. are used to boost the intake air pressure. The review extends to the energy balance study of low heat rejection engines (LHR) as well as the effects of engine variables and design factors on energy balance.

149 citations