scispace - formally typeset
Search or ask a question
Author

J.B.A. Maintz

Bio: J.B.A. Maintz is an academic researcher from Utrecht University. The author has contributed to research in topics: Image registration & Mutual information. The author has an hindex of 13, co-authored 14 publications receiving 5519 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview is presented of the medical image processing literature on mutual-information-based registration, an introduction for those new to the field, an overview for those working in the field and a reference for those searching for literature on a specific application.
Abstract: An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.

3,121 citations

Journal ArticleDOI
TL;DR: The results indicate that retrospective techniques have the potential to produce satisfactory results much of the time, but that visual inspection is necessary to guard against large errors.
Abstract: Comparison and evaluation of retrospective intermodality brain image registration techniques

835 citations

Journal ArticleDOI
11 Oct 2000
TL;DR: In this article, the authors proposed to include spatial information by combining mutual information with a term based on the image gradient of the images to be registered, which not only seeks to align locations of high gradient magnitude, but also aims for a similar orientation of the gradients at these locations.
Abstract: Mutual information has developed into an accurate measure for rigid and affine monomodality and multimodality image registration. The robustness of the measure is questionable, however. A possible reason for this is the absence of spatial information in the measure. The present paper proposes to include spatial information by combining mutual information with a term based on the image gradient of the images to be registered. The gradient term not only seeks to align locations of high gradient magnitude, but also aims for a similar orientation of the gradients at these locations. Results of combining both standard mutual information as well as a normalized measure are presented for rigid registration of three-dimensional clinical images [magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET)]. The results indicate that the combined measures yield a better registration function does mutual information or normalized mutual information per se. The registration functions are less sensitive to low sampling resolution, do not contain incorrect global maxima that are sometimes found in the mutual information function, and interpolation-induced local minima can be reduced. These characteristics yield the promise of more robust registration measures. The accuracy of the combined measures is similar to that of mutual information-based methods.

687 citations

Journal ArticleDOI
TL;DR: Ridge-like structures in digital images may be extracted by convolving the images with derivatives of Gaussians, and various ridge measures related to isophote curvature are constructed, reviewed, and evaluated with respect to their usability in CT/MRI matching of human brain scans.
Abstract: Ridge-like structures in digital images may be extracted by convolving the images with derivatives of Gaussians. The choice of the convolution operator and of the parameters involved defines a specific ridge image. In this paper, various ridge measures related to isophote curvature are constructed, reviewed, and evaluated with respect to their usability in CT/MRI matching of human brain scans. Construction is initially done using heuristics in two-dimensional images, and then established firmly in a mathematical framework. Attention is paid to the necessity of operator invariance, scale of the operator, extension to three-dimensional images, and relations to isophote and principal curvature. It is shown that one of the ridge measures appears well suited for the purpose of matching, despite the fact that the measure fails to detect ridges in a number of stylized scenes.

210 citations

Journal ArticleDOI
TL;DR: An automated approach to register CT and MR brain images that achieves an accurate match even if the scanned volumes to be matched do not completely overlap, or if some of the features in the images are not similar.
Abstract: Describes an automated approach to register CT and MR brain images. Differential operators in scale space are applied to each type of image data, so as to produce feature images depicting "ridgeness". The resulting CT and MR feature images show similarities which can be used for matching. No segmentation is needed and the method is devoid of human interaction. The matching is accomplished by hierarchical correlation techniques. Results of 2-D and 3-D matching experiments are presented. The correlation function ensures an accurate match even if the scanned volumes to be matched do not completely overlap, or if some of the features in the images are not similar. >

193 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the use of local optimisation methods together with the standard multi-resolution approach is not sufficient to reliably find the global minimum, so a global optimisation method is proposed that is specifically tailored to this form of registration.

6,413 citations

Journal ArticleDOI
TL;DR: The results clearly indicate that the proposed nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.
Abstract: In this paper the authors present a new approach for the nonrigid registration of contrast-enhanced breast MRI. A hierarchical transformation model of the motion of the breast has been developed. The global motion of the breast is modeled by an affine transformation while the local breast motion is described by a free-form deformation (FFD) based on B-splines. Normalized mutual information is used as a voxel-based similarity measure which is insensitive to intensity changes as a result of the contrast enhancement. Registration is achieved by minimizing a cost function, which represents a combination of the cost associated with the smoothness of the transformation and the cost associated with the image similarity. The algorithm has been applied to the fully automated registration of three-dimensional (3-D) breast MRI in volunteers and patients. In particular, the authors have compared the results of the proposed nonrigid registration algorithm to those obtained using rigid and affine registration techniques. The results clearly indicate that the nonrigid registration algorithm is much better able to recover the motion and deformation of the breast than rigid or affine registration algorithms.

5,490 citations

Journal ArticleDOI
TL;DR: The results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.
Abstract: A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.

4,773 citations