scispace - formally typeset
Search or ask a question
Author

J. B. Gnanamoorthy

Bio: J. B. Gnanamoorthy is an academic researcher from Indira Gandhi Centre for Atomic Research. The author has contributed to research in topics: Corrosion & Stress corrosion cracking. The author has an hindex of 9, co-authored 25 publications receiving 293 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours).
Abstract: This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.

35 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the integrity of the oxide scale of 9Cr-1Mo steel and found that the scale buckled before spalling when no external stress was applied.
Abstract: Tensile specimens of 9Cr-1Mo steel weresubjected to oxidation in air at a temperature of 973 Kfor periods of 25, 47, 70, 97, 120, and 140 hr. Theintegrity of the oxide scale was examined by an in-situ technique which involved the recording of theacoustic-emission activity associated with the breakingof the scale. Specimens were also subjected to oxidationfor the same times after subjecting them to an external stress of 40 MPa. The applicationof the external stress was found to alter the integrityof the scale. Spalling of the scale occurred to a lesserextent when external stress was applied due to partial release of growth stresses becauseof the elongation of the specimen. The scale buckledbefore spalling when no external stress was applied. Onthe other hand, the scale developed wedge-type cracks before spalling when subjected toexternal stress during oxidation. Postoxidationexamination of the stressed specimen revealedsubstantial segregation of silicon and chromium at thegrain boundaries (oxide ridges). The specimens, which wereoxidized without external stress, revealed a reductionin the concentration of chromium on the surface. Thisbehavior was attributed to enhanced spalling in the case of the latter specimen compared to theformer.

32 citations

Journal ArticleDOI
TL;DR: In this article, a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl+ 0.15M Na2SO4+ 3 mL/L HC1 (bp 381 K) was presented.
Abstract: Stress corrosion data on a nuclear grade AISI type 304 stainless steel in a boiling solution of 5M NaCl+ 0.15M Na2SO4+ 3 mL/L HC1 (bp 381 K) for various metallurgical conditions of the steel are presented in this article. The metallurgical conditions used are solution annealing, sensitization, 10 pct cold work, 20 pct cold work, solution annealing + sensitization, 10 pct cold work + sensi-tization, and 20 pct cold work + sensitization. The fracture mechanics approach has been used to obtain quantitative data on the stress corrosion crack growth rates. The stress intensity factor,K 1, andJ integral,J 1, have been used as evaluation parameters. The crack growth rates have been measured using compact tension type samples under both increasing and decreasing stress intensity factors. A crack growth rate of 5 X 10-11 m/s was chosen for the determination of threshold para-meters. Results of the optical microscopic and fractographic examinations are presented. Acoustic signals were recorded during crack growth. Data generated from acoustic emissions, activation energy measurements, and fractographic features indicate hydrogen embrittlement as the possible mechanism of cracking.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the localised corrosion behavior of 17-4 PH stainless steel, in the solution annealed, aged, and overaged conditions, was studied in acidic chloride and sulphuric acid media using the potentiodynamic anodic polarisation method.
Abstract: The localised corrosion behaviour of 17–4 PH (precipitation hardenable) stainless steel, in the solution annealed, aged, and overaged conditions, was studied in acidic chloride and sulphuric acid media using the potentiodynamic anodic polarisation method. Electrochemical potentiokinetic reactivation (EPR) studies and microstructural examination were also carried out. In the acidic chloride medium, the material in the solution annealed and overaged conditions corroded uniformly, whereas in the aged condition it exhibited passivity and pitting. In the sulphuric acid medium, the magnitude of anodic peaks changed significantly on varying the microstructural condition. The EPR charge and reactivation peak current density values, which were lower in the aged condition than in the solution annealed and overaged conditions, were in good agreement with the microstructural observations and results of polarisation studies.MST/1087

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the structure and properties of bearing steels prior to the point of service are first assessed and described in the context of steelmaking, manufacturing and engineering requirements, followed by a thorough critique of the damage mechanisms that operate during service and in accelerated tests.

729 citations

Journal ArticleDOI
TL;DR: In this article, a review of the issues in depth and examines emerging directions for improving the performance of orthopaedic devices is presented, including bulk alloying with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings.
Abstract: Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co-Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.

300 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe3O4) nanoparticles during co-precipitation was reported.

287 citations

Journal ArticleDOI
TL;DR: In this article, a systematic investigation of the influence of nitrogen alloying on the pitting corrosion of austenitic stainless steels was performed and the results indicated a synergistic interaction between the two alloying elements.

207 citations

Journal ArticleDOI
TL;DR: In this paper, the WRC-92 diagram is used as a general guide to maintain a desirable solidification mode during welding, which is a significant problem during the welding of austenitic stainless steels.
Abstract: Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

202 citations