scispace - formally typeset
Search or ask a question
Author

J. Bruning

Bio: J. Bruning is an academic researcher from Bell Labs. The author has contributed to research in topics: Codes for electromagnetic scattering by spheres & Scattering. The author has an hindex of 2, co-authored 2 publications receiving 408 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new recursion relation is derived which reduces the computation effort by several orders of magnitude so that a quantitative analysis for spheres as large as 10 λ in radius at a spacing as small as two spheres in contact becomes feasible.
Abstract: Solution to the multiple scattering of electromagnetic (EM) waves by two arbitrary spheres has been pursued first by the multipole expansion method. Previous attempts at numerical solution have been thwarted by the complexity of the translational addition theorem. A new recursion relation is derived which reduces the computation effort by several orders of magnitude so that a quantitative analysis for spheres as large as 10\lambda in radius at a spacing as small as two spheres in contact becomes feasible. Simplification and approximation for various cases are also given. With the availability of exact solution, the usefulness of various approximate solutions can be determined quantitatively. For high frequencies, the ray-optical solution is given for two conducting spheres. In addition to the geometric and creeping wave rays pertaining to each sphere alone, there are rays that undergo multiple reflections, multiple creeps, and combinations of both, called the hybrid rays. Numerical results show that the ray-optical solution can be accurate for spheres as small as \lambda/4 in radius is some cases. Despite some shortcomings, this approach provides much physical insight into the multiple scattering phenomena.

306 citations

Journal ArticleDOI
TL;DR: In this paper, the first appearance of reliable results for the scattered field from two spheres of radii larger than one wavelength and as large as ten or more was presented. But these results were only applied to three collinear spheres of various materials.
Abstract: In [8], both low- and high-frequency solutions to the two-sphere problem were presented in a form suitable for efficient computer solution, Here, numerical results are presented using a method which has enabled the first appearance of reliable results for the scattered field from two spheres of radii larger than one wavelength and as large as ten or more. Radar cross sections (RCS) are computed for numerous configurations of two spheres of various materials. Results for scattering by three collinear spheres are also given. An experimental program was undertaken and is briefly described. Whenever possible, these results are compared with the theory. In all cases the agreement is excellent. Depolarization due to multiple scattering is also investigated, revealing some interesting effects and practical applications to scattering range calibration.

105 citations


Cited by
More filters
Book
04 Oct 2009
TL;DR: In this article, the authors present a review of vector calculus and functions of a complex variable and Fraunhoffer diffraction by a circular hole, and a miscellany of bidirectional reflectances and related quantities.
Abstract: Acknowledgements 1. Introduction 2. Electromagnetic wave propagation 3. The absorption of light 4. Specular reflection 5. Single particle scattering: perfect spheres 6. Single particle scattering: irregular particles 7. Propagation in a nonuniform medium: the equation of radiative transfer 8. The bidirectional reflectance of a semi-infinite medium 9. The opposition effect 10. A miscellany of bidirectional reflectances and related quantities 11. Integrated reflectances and planetary photometry 12. Photometric effects of large scale roughness 13. Polarization 14. Reflectance spectroscopy 15. Thermal emission and emittance spectroscopy 16. Simultaneous transport of energy by radiation and conduction Appendix A. A brief review of vector calculus Appendix B. Functions of a complex variable Appendix C. The wave equation in spherical coordinates Appendix D. Fraunhoffer diffraction by a circular hole Appendix E. Table of symbols Bibliography Index.

1,951 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of scattering and absorption of light by fractal aggregates, which are typically diffusion limited cluster aggregates with fractal dimensions of D.
Abstract: This paper presents a review of scattering and absorption of light by fractal aggregates. The aggregates are typically diffusion limited cluster aggregates (DLCA) with fractal dimensions of D

1,027 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of Waterman's T-matrix approach is reviewed, which is one of the most powerful and widely used tools for accurately computing light scattering by nonspherical particles, both single and composite, based on directly solving Maxwell's equations.
Abstract: We review the current status of Waterman's T-matrix approach which is one of the most powerful and widely used tools for accurately computing light scattering by nonspherical particles, both single and composite, based on directly solving Maxwell's equations. Specifically, we discuss the analytical method for computing orientationally-averaged light-scattering characteristics for ensembles of nonspherical particles, the methods for overcoming the numerical instability in calculating the T matrix for single nonspherical particles with large size parameters and/or extreme geometries, and the superposition approach for computing light scattering by composite/aggregated particles. Our discussion is accompanied by multiple numerical examples demonstrating the capabilities of the T-matrix approach and showing effects of nonsphericity of simple convex particles (spheroids) on light scattering.

1,022 citations

Journal ArticleDOI
TL;DR: An efficient numerical method is developed for the T-matrix calculation, which is faster and requires less computer memory than the alternative approach based on matrix inversion and allows calculation of the random orientation scattering properties of a cluster in a fraction of the time required for numerical quadrature.
Abstract: We present a method for determination of the random-orientation polarimetric scattering properties of an arbitrary, nonsymmetric cluster of spheres. The method is based on calculation of the cluster T matrix, from which the orientation-averaged scattering matrix and total cross sections can be analytically obtained. An efficient numerical method is developed for the T-matrix calculation, which is faster and requires less computer memory than the alternative approach based on matrix inversion. The method also allows calculation of the random orientation scattering properties of a cluster in a fraction of the time required for numerical quadrature. Numerical results for the random orientation scattering matrix are presented for sphere ensembles in the form of densely packed clusters and linear chains.

714 citations

Journal ArticleDOI
Yu-lin Xu1
TL;DR: A comprehensive solution to the classical problem of electromagnetic scattering by aggregates of an arbitrary number of arbitrarily configured spheres that are isotropic and homogeneous but may be of different size and composition is presented.
Abstract: We present a comprehensive solution to the classical problem of electromagnetic scattering by aggregates of an arbitrary number of arbitrarily configured spheres that are isotropic and homogeneous but may be of different size and composition. The profile of incident electromagnetic waves is arbitrary. The analysis is based on the framework of the Mie theory for a single sphere and the existing addition theorems for spherical vector wave functions. The classic Mie theory is generalized. Applying the extended Mie theory to all the spherical constituents in an aggregate simultaneously leads to a set of coupled linear equations in the unknown interactive coefficients. We propose an asymptotic iteration technique to solve for these coefficients. The total scattered field of the entire ensemble is constructed with the interactive scattering coefficients by the use of the translational addition theorem a second time. Rigorous analytical expressions are derived for the cross sections in a general case and for all the elements of the amplitude-scattering matrix in a special case of a plane-incident wave propagating along the z axis. As an illustration, we present some of our preliminary numerical results and compare them with previously published laboratory scattering measurements.

621 citations