scispace - formally typeset
Search or ask a question
Author

J. Bueno

Bio: J. Bueno is an academic researcher from Netherlands Institute for Space Research. The author has contributed to research in topics: Terahertz radiation & Detector. The author has an hindex of 9, co-authored 26 publications receiving 407 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the resonator also enables the study of the response of the electron system of the superconductor to pair-breaking photons, microwave photons and varying temperatures, and shows an unprecedented detector sensitivity.
Abstract: In a superconductor, in which electrons are paired, the density of unpaired electrons should become zero when approaching zero temperature. Therefore, radiation detectors based on breaking of pairs promise supreme sensitivity, which we demonstrate using an aluminium superconducting microwave resonator. Here we show that the resonator also enables the study of the response of the electron system of the superconductor to pair-breaking photons, microwave photons and varying temperatures. A large range in radiation power (at 1.54?THz) can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48±8%) and showing an unprecedented detector sensitivity. At low radiation power, fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime.

132 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of temperature progr ammed desorption (TPD) experiments with pre-cometary ice analogs composed of up to five molecular components: H 2O, CO, CO2, CH3OH, and NH3.
Abstract: Context. Thermal annealing of interstellar ices takes place in sever al stages of star formation. Knowledge of this process comes from a combination of astronomical observations and laboratory simulations under astrophysically relevant conditions. Aims. For the first time we present the results of temperature progr ammed desorption (TPD) experiments with pre-cometary ice analogs composed of up to five molecular components: H 2O, CO, CO2, CH3OH, and NH3. Methods. The experiments were performed with an ultra-high vacuum chamber. A gas line with a novel design allows the controlled preparation of mixtures with up to five molecular components . Volatiles desorbing to the gas phase were monitored using a quadrupole mass spectrometer, while changes in the ice structure and composition were studied by means of infrared spectroscopy. Results. The TPD curves of water ice containing CO, CO2, CH3OH, and NH3 present desorption peaks at temperatures near those observed in pure ice experiments, volcano desorption peaks after water ice crystallization, and co-desorption peaks w ith water. Desorption peaks of CH3OH and NH3 at temperatures similar to the pure ices takes place when their abundance relative to water is above ∼ 3 % in the ice matrix. We found that CO, CO2, and NH3 also present co-desorption peaks with CH3OH, which cannot be reproduced in experiments with binary water-rich ice mixtures. These are extensively used in the study of thermal desorption of interstellar ices. Conclusions. These results reproduce the heating of circumstellar ices i n hot cores and can be also applied to the late thermal evolution of comets. In particular, TPD curves represent a benchmark for the analysis of the measurements that mass spectrometers on board the ESA-Rosetta cometary mission will perform on the coma of comet 67P/Churyumov-Gerasimenko, which will be active before the arrival of Rosetta according to our predictions.

115 citations

Journal ArticleDOI
TL;DR: In this paper, a background limited broadband antenna coupled kinetic inductance detector covering the frequency range from 1.4 to 2.8 GHz was presented, and the measured optical efficiency, beam pattern, and antenna frequency response match very well the simulations.
Abstract: We present the design, fabrication, and full characterisation (sensitivity, beam pattern, and frequency response) of a background limited broadband antenna coupled kinetic inductance detector covering the frequency range from 1.4 to 2.8 THz. This device shows photon noise limited performance with a noise equivalent power of 2.5 × 10−19 W/Hz1∕2 at 1.55 THz and can be easily scaled to a kilo-pixel array. The measured optical efficiency, beam pattern, and antenna frequency response match very well the simulations.

34 citations

Journal ArticleDOI
TL;DR: In this article, a planar antenna is placed in the focus of an extended hemispherical lens to increase the filling factor and to match efficiently to fore optics for millimeter-wave kinetic inductance detectors (MKIDs).
Abstract: Next generation sub-mm imaging instruments require kilo-pixel focal plane arrays filled with background limited detectors. Microwave kinetic inductance detectors (MKIDs) are a state-of-the-art detector for future instruments due to their inherent multiplexing capabilities. An MKID consists of a superconducting resonator coupled to a feed-line that is used for readout. In the device presented here radiation coupling is achieved by coupling the MKID directly to a planar antenna. The antenna is placed in the focus of an extended hemispherical lens to increase the filling factor and to match efficiently to fore optics. In this paper, we present the design and the optical performance of MKIDs optimized for operation in a 100-GHz band around 850 GHz. We have measured the coupling efficiency, frequency response, and beam patterns and compare those results to simulated performance. We obtain an excellent agreement between the measured and simulated beam pattern, frequency response, and absolute coupling efficiency between a thermal calibration source and the power absorbed in the detector. Additionally, we demonstrate that antenna coupled MKIDs offer background limited radiation detection down to ∼100 aW of power absorbed in the detector.

27 citations

Journal ArticleDOI
TL;DR: In this paper, a model was developed that fits the data over five orders of magnitude in sweep rate and optical signal power and provided a natural calibration of the absorbed power, thereby able to measure the noise equivalent power of the detector as a function of absorbed power.
Abstract: We observed a sweep rate dependence of the quantum capacitance in a single Cooper-Pair box used as the readout of a Quantum Capacitance Detector. A model was developed that fits the data over five orders of magnitude in sweep rate and optical signal power and provides a natural calibration of the absorbed power. We are thereby able to measure the noise equivalent power of the detector as a function of absorbed power. We find that it is shot-noise-limited in detecting 1.5 THz photons with absorbed power ranging from 1 × 10−22 W to 1 × 10−17 W.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed a wideband ultra wideband (UWB) communication protocol with a low EIRP level (−41.3dBm/MHz) for unlicensed operation between 3.1 and 10.6 GHz.
Abstract: Before the emergence of ultra-wideband (UWB) radios, widely used wireless communications were based on sinusoidal carriers, and impulse technologies were employed only in specific applications (e.g. radar). In 2002, the Federal Communication Commission (FCC) allowed unlicensed operation between 3.1–10.6 GHz for UWB communication, using a wideband signal format with a low EIRP level (−41.3dBm/MHz). UWB communication systems then emerged as an alternative to narrowband systems and significant effort in this area has been invested at the regulatory, commercial, and research levels.

452 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze ALMA long baseline 2.9, 1.3 and 0.87 mm continuum images of the young star HL Tau, and suggest that the emission dips observed are due to rapid pebble growth around the condensation fronts of abundant volatile species.
Abstract: Water and simple organic molecular ices dominate the mass of solid materials available for planetesimal and planet formation beyond the water snow line. Here we analyze ALMA long baseline 2.9, 1.3 and 0.87 mm continuum images of the young star HL Tau, and suggest that the emission dips observed are due to rapid pebble growth around the condensation fronts of abundant volatile species. Specifically, we show that the prominent innermost dip at 13 AU is spatially resolved in the 0.87 mm image, and its center radius is coincident with the expected mid-plane condensation front of water ice. In addition, two other prominent dips, at distances of 32 and 63 AU, cover the mid-plane condensation fronts of pure ammonia or ammonia hydrates and clathrate hydrates (especially with CO and N_2) formed from amorphous water ice. The spectral index map of HL Tau between 1.3 and 0.87 mm shows that the flux ratios inside the dips are statistically larger than those of nearby regions in the disk. This variation can be explained by a model with two dust populations, where most of the solid mass resides in a component that has grown to decimeter size scales inside the dips. Such growth is in accord with recent numerical simulations of volatile condensation, dust coagulation, and settling.

383 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a systematic analysis of annular substructures in the 18 single-disk systems targeted in this survey, and find that annular structures can occur at virtually any radius where millimeter continuum emission is detected and range in widths from a few astronomical units to tens of astronomical units.
Abstract: The Disk Substructures at High Angular Resolution Project (DSHARP) used ALMA to map the 1.25 mm continuum of protoplanetary disks at a spatial resolution of similar to 5 au. We present a systematic analysis of annular substructures in the 18 single-disk systems targeted in this survey. No dominant architecture emerges from this sample;instead, remarkably diverse morphologies are observed. Annular substructures can occur at virtually any radius where millimeter continuum emission is detected and range in widths from a few astronomical units to tens of astronomical units. Intensity ratios between gaps and adjacent rings range from near-unity to just a few percent. In a minority of cases, annular substructures coexist with other types of substructures, including spiral arms (3/18) and crescent-like azimuthal asymmetries (2/18). No clear trend is observed between the positions of the substructures and stellar host properties. In particular, the absence of an obvious association with stellar host luminosity (and hence the disk thermal structure) suggests that substructures do not occur preferentially near major molecular snowlines. Annular substructures like those observed in DSHARP have long been hypothesized to be due to planet-disk interactions. A few disks exhibit characteristics particularly suggestive of this scenario, including substructures in possible mean-motion resonance and "double gap" features reminiscent of hydrodynamical simulations of multiple gaps opened by a planet in a low-viscosity disk.

376 citations

Journal ArticleDOI
TL;DR: By integrating recent developments in high-fidelity qubit readout and feedback control in circuit quantum electrodynamics, a state-of-the-art transmon is transformed into its own real-time charge-parity detector and it is demonstrated that quasiparticle tunnelling does not presently bottleneck transmon qubit coherence.
Abstract: The tunnelling of quasiparticles across Josephson junctions in superconducting quantum circuits is an intrinsic decoherence mechanism for qubit degrees of freedom. Understanding the limits imposed by quasiparticle tunnelling on qubit relaxation and dephasing is of theoretical and experimental interest, particularly as improved understanding of extrinsic mechanisms has allowed crossing the 100 microsecond mark in transmon-type charge qubits. Here, by integrating recent developments in high-fidelity qubit readout and feedback control in circuit quantum electrodynamics, we transform a state-of-the-art transmon into its own real-time charge-parity detector. We directly measure the tunnelling of quasiparticles across the single junction and isolate the contribution of this tunnelling to qubit relaxation and dephasing, without reliance on theory. The millisecond timescales measured demonstrate that quasiparticle tunnelling does not presently bottleneck transmon qubit coherence, leaving room for yet another order of magnitude increase.

235 citations