scispace - formally typeset
Search or ask a question
Author

J. C. Gallet

Bio: J. C. Gallet is an academic researcher from Joseph Fourier University. The author has contributed to research in topics: Snow & Environmental science. The author has an hindex of 1, co-authored 1 publications receiving 1504 citations.
Topics: Snow, Environmental science, Arctic, Snowpack, Ecology

Papers
More filters
Journal ArticleDOI
10 Aug 2007-Science
TL;DR: It is suggested that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.
Abstract: A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ∼800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records.

1,723 citations

Journal ArticleDOI
TL;DR: For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change as discussed by the authors .
Abstract: For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ålesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ålesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ålesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change.

8 citations

TL;DR: In this paper , the authors evaluate the impact of increased melting on the preservation of the oxygen isotope signal (δ 18 O) in firn records and link its degradation to the increase in frequency and intensity of melt events.
Abstract: 41 The Svalbard archipelago is particularly sensitive to climate change due to the relatively low elevation 42 of its main ice fields and its geographic location in the upper North Atlantic, where the effect of Arctic 43 Amplification is most significant. The largest temperature increases were observed during winter, but 44 higher summer temperatures, above the melting point, led to increased glacier melting. Here we 45 evaluate the impact of this increased melting on the preservation of the oxygen isotope signal (δ 18 O) 46 in firn records. δ 18 O is commonly used as a proxy for reconstructing past atmospheric temperature 47 and it is a crucial parameter to date and align ice cores when preserved. By comparing four different 48 firn cores collected in 2012, 2015, 2017 and 2019 in the upper part of the Holtedahlfonna ice field 49 (1100 m. a.s.l.), we show a progressive deterioration of the isotopic signal and we link its degradation 50 to the increase in frequency and intensity of melt events. Although the δ 18 O signal still reflects the 51 interannual temperature trend, more frequent melt events in the future could affect the interpretation 52 of the isotopic signal, compromising the use of Svalbard ice cores. Our results highlight the impact 53 and the speed with which Arctic Amplification is affecting Svalbard cryosphere.
Journal ArticleDOI
TL;DR: In this article , the authors used a Bayesian fitting strategy to evaluate Hubbell's Unified Neutral Theory of Biodiversity at multiple sites, tested for neutrality and defined immigration rates at different taxonomic levels.
Abstract: Abstract Background Arctic snowpack microbial communities are continually subject to dynamic chemical and microbial input from the atmosphere. As such, the factors that contribute to structuring their microbial communities are complex and have yet to be completely resolved. These snowpack communities can be used to evaluate whether they fit niche-based or neutral assembly theories. Methods We sampled snow from 22 glacier sites on 7 glaciers across Svalbard in April during the maximum snow accumulation period and prior to the melt period to evaluate the factors that drive snowpack metataxonomy. These snowpacks were seasonal, accumulating in early winter on bare ice and firn and completely melting out in autumn. Using a Bayesian fitting strategy to evaluate Hubbell’s Unified Neutral Theory of Biodiversity at multiple sites, we tested for neutrality and defined immigration rates at different taxonomic levels. Bacterial abundance and diversity were measured and the amount of potential ice-nucleating bacteria was calculated. The chemical composition (anions, cations, organic acids) and particulate impurity load (elemental and organic carbon) of the winter and spring snowpack were also characterized. We used these data in addition to geographical information to assess possible niche-based effects on snow microbial communities using multivariate and variable partitioning analysis. Results While certain taxonomic signals were found to fit the neutral assembly model, clear evidence of niche-based selection was observed at most sites. Inorganic chemistry was not linked directly to diversity, but helped to identify predominant colonization sources and predict microbial abundance, which was tightly linked to sea spray. Organic acids were the most significant predictors of microbial diversity. At low organic acid concentrations, the snow microbial structure represented the seeding community closely, and evolved away from it at higher organic acid concentrations, with concomitant increases in bacterial numbers. Conclusions These results indicate that environmental selection plays a significant role in structuring snow microbial communities and that future studies should focus on activity and growth.

Cited by
More filters
Journal ArticleDOI
15 May 2008-Nature
TL;DR: It is found that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v.
Abstract: Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.

1,977 citations

Journal ArticleDOI
TL;DR: The Greenland Ice Core Chronology 2005 (GICC05) as discussed by the authors is a time scale based on annual layer counting of high-resolution records from Greenland ice cores, which continuously covers the past 60 ka.
Abstract: . The Greenland Ice Core Chronology 2005 (GICC05) is a time scale based on annual layer counting of high-resolution records from Greenland ice cores. Whereas the Holocene part of the time scale is based on various records from the DYE-3, the GRIP, and the NorthGRIP ice cores, the glacial part is solely based on NorthGRIP records. Here we present an 18 ka extension of the time scale such that GICC05 continuously covers the past 60 ka. The new section of the time scale places the onset of Greenland Interstadial 12 (GI-12) at 46.9±1.0 ka b2k (before year AD 2000), the North Atlantic Ash Zone II layer in GI-15 at 55.4±1.2 ka b2k, and the onset of GI-17 at 59.4±1.3 ka b2k. The error estimates are derived from the accumulated number of uncertain annual layers. In the 40–60 ka interval, the new time scale has a discrepancy with the Meese-Sowers GISP2 time scale of up to 2.4 ka. Assuming that the Greenland climatic events are synchronous with those seen in the Chinese Hulu Cave speleothem record, GICC05 compares well to the time scale of that record with absolute age differences of less than 800 years throughout the 60 ka period. The new time scale is generally in close agreement with other independently dated records and reference horizons, such as the Laschamp geomagnetic excursion, the French Villars Cave and the Austrian Kleegruben Cave speleothem records, suggesting high accuracy of both event durations and absolute age estimates.

965 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the current CO2 level can be reduced to at most 350 ppm by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon.
Abstract: Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. If the present overshoot of this target CO2 is not brief, there is a possibility of seeding irreversible catastrophic effects.

936 citations

Journal ArticleDOI
30 Jun 2016-Nature
TL;DR: Observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’.
Abstract: Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record’s length and temporal precision allow us to test the idea that insolation changes caused by the Earth’s precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record’s timing, the terminations are separated by four or five precession cycles, supporting the idea that the ‘100,000-year’ ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’. Records of the Asian monsoon have been extended to 640,000 years ago, and confirm both that the 100,000-year ice age cycle results from integral numbers of precessional cycles and that insolation influences the pacing of major millennial-scale climate events. Prior records of the Asian monsoon have revealed cyclic variations over hundreds of thousands of years, probably driven by variations in insolation caused by the precession of Earth's orbit. Hai Cheng and colleagues now provide a speleothem record from Chinese cave samples that extends earlier records to 640,000 years ago, close to the maximum age possible with uranium/thorium dating. This spectacular record confirms that the characteristic '100,000-year' ice age cycle corresponds to an integral number (four or five) of precession cycles, and that insolation influences millennial-scale variations in monsoon strength.

879 citations

Journal ArticleDOI
17 Jul 2009-Science
TL;DR: The first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bølling-Allerød (BA) warming reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations.
Abstract: We conducted the first synchronously coupled atmosphere-ocean general circulation model simulation from the Last Glacial Maximum to the Bolling-Allerod (BA) warming. Our model reproduces several major features of the deglacial climate evolution, suggesting a good agreement in climate sensitivity between the model and observations. In particular, our model simulates the abrupt BA warming as a transient response of the Atlantic meridional overturning circulation (AMOC) to a sudden termination of freshwater discharge to the North Atlantic before the BA. In contrast to previous mechanisms that invoke AMOC multiple equilibrium and Southern Hemisphere climate forcing, we propose that the BA transition is caused by the superposition of climatic responses to the transient CO 2 forcing, the AMOC recovery from Heinrich Event 1, and an AMOC overshoot.

873 citations