scispace - formally typeset
Search or ask a question
Author

J. C. Halpin Affdl

Bio: J. C. Halpin Affdl is an academic researcher from Wright-Patterson Air Force Base. The author has an hindex of 1, co-authored 1 publications receiving 2307 citations. Previous affiliations of J. C. Halpin Affdl include Washington University in St. Louis.

Papers
More filters
Journal ArticleDOI
TL;DR: The Halpin-Tsai equations are based upon the self-consistent micromechanics method developed by Hill as discussed by the authors. But they are not suitable for semi-crystalline polymers.
Abstract: The Halpin-Tsai equations are based upon the “self-consistent micromechanics method” developed by Hill. Hermans employed this model to obtain a solution in terms of Hill's “reduced moduli”. Halpin and Tsai have reduced Hermans' solution to a simpler analytical form and extended its use for a variety of filament geometries. The development of these micromechanic's relationships, which form the operational bases for the coniposite analogy of Halpin and Kardos for semi-crystalline polymers, are reviewed herein.

2,609 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations

Journal ArticleDOI
TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Abstract: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

4,920 citations

Journal ArticleDOI
TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Abstract: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers. This technique is applicable to virtually every soluble or fusible polymer. The polymers can be chemically modified and can also be tailored with additives ranging from simple carbon-black particles to complex species such as enzymes, viruses, and bacteria. Electrospinning appears to be straightforward, but is a rather intricate process that depends on a multitude of molecular, process, and technical parameters. The method provides access to entirely new materials, which may have complex chemical structures. Electrospinning is not only a focus of intense academic investigation; the technique is already being applied in many technological areas.

3,833 citations

Journal ArticleDOI
01 Aug 2006-Carbon
TL;DR: In this article, a review of the progress to date in the field of mechanical reinforcement of polymers using nanotubes is presented, and the most promising processing methods for mechanical reinforcement are discussed.

3,770 citations

Journal ArticleDOI
07 Jul 2008-Polymer
TL;DR: In this paper, the technology involved with exfoliated clay-based nanocomposites and also include other important areas including barrier properties, flammability resistance, biomedical applications, electrical/electronic/optoelectronic applications and fuel cell interests.

2,917 citations