scispace - formally typeset
Search or ask a question
Author

J. C. Sherris

Bio: J. C. Sherris is an academic researcher. The author has contributed to research in topics: Antibiotic sensitivity. The author has an hindex of 2, co-authored 2 publications receiving 1371 citations.

Papers
More filters
01 Jan 1971
TL;DR: A working party of people well known internationally in the field of antibiotic sensitivity testing was set up under World Health Organization sponsorship in 1961 to investigate the possibility of introducing standard techniques which might become universal reference methods.
Abstract: A working party of people well known internationally in the field of was set up under World Health Organization sponsorship in 1961 to study the reproducibility of antibiotic sensitivity testing. Their aim was to investigate the possibility of introducing standard techniques which might become universal reference methods. The work involved 16 laboratories. Each was provided with the same 16 organisms, supplies of standard media and antibiotics and precise instructions for their use. The Other CABI sites 

1,375 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated.
Abstract: The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16-20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.

4,223 citations

Book
01 Jan 2019
TL;DR: The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most recent editions of M02, M07, and M11, and users should replace outdated editions with the current editions of CLSI documents.
Abstract: The data in the interpretive tables in this supplement are valid only if the methodologies in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards are followed: M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard—Eighth Edition. The standards contain information about both disk (M02) and dilution (M07 and M11) test procedures for aerobic and anaerobic bacteria. Clinicians depend heavily on information from the microbiology laboratory for treatment of their seriously ill patients. The clinical importance of antimicrobial susceptibility test results demands that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents. The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most current editions of M02, M07, and M11. Users should replace the tables published earlier with these new tables. (Changes in the tables since the previous edition appear in boldface type.) Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100 (ISBN 1-56238-804-5 [Print]; ISBN 1-56238-805-3 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2017. The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: +1.610.688.0100; Fax: +1.610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org. M100S, 26th ed. January 2016 Replaces M100-S25 Performance Standards for Antimicrobial Susceptibility Testing Jean B. Patel, PhD, D(ABMM) Franklin R. Cockerill III, MD George M. Eliopoulos, MD Stephen G. Jenkins, PhD, D(ABMM), F(AAM) James S. Lewis II, PharmD Brandi Limbago, PhD David P. Nicolau, PharmD, FCCP, FIDSA Robin Patel, MD M ir Pow ll, MD, FRCP, FRCPath Sandra S. Richter, MD, D(ABMM) Jana M. Swenson, MMSc Maria M. Traczewski, BS, MT(ASCP) John D. Turnidge, MD Melvi P. Weinstein, MD Barbara L. Zimmer, PhD

3,367 citations

Book
01 Jan 2006
TL;DR: This document describes standard broth dilution and microdilution and agar dilution techniques and it includes a series of procedures to standardize the way the tests are performed, and the performance, applications, and limitations of the current CLSI-recommended methods are described.
Abstract: Susceptibility testing is indicated for any organism that contributes to an infectious process warranting antimicrobial chemotherapy, if its susceptibility cannot be reliably predicted from knowledge of the organism’s identity. Susceptibility tests are most often indicated when the causative organism is thought to belong to a species capable of exhibiting resistance to commonly used antimicrobial agents. A variety of laboratory methods can be used to measure the in vitro susceptibility of bacteria to antimicrobial agents. This document describes standard broth dilution (macrodilution and microdilution [the microdilution method described in M07 is the same methodology outlined in ISO 20776-1]) and agar dilution techniques, and it includes a series of procedures to standardize the way the tests are performed. The performance, applications, and limitations of the current CLSI-recommended methods are also described. The supplemental information (M100 tables) presented with this standard represents the most current information for drug selection, interpretation, and quality control using the procedures standardized in M07. These tables, as in previous years, have been updated and should replace tables published in earlier years. Changes in the tables since the previous edition (M100-S18) appear in boldface type and are also summarized in the front of the document. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Eighth Edition. CLSI document M07-A8 (ISBN 1-56238-689-1). Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2009. The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI/NCCLS documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: 610.688.0100; Fax: 610.688.0700; E-Mail: customerservice@clsi.org; Website: www.clsi.org Product Name: Infobase 2010 Release Date: February 2010 This document is protected by international copyright laws.

2,314 citations

Journal ArticleDOI
TL;DR: Before 1985 at the Pitié-Salpêtrière Hospital in Paris, resistance to cefotaxime in clinical isolates of Enterobacteriaceae involved only species producing inducible class 1 beta-lactamase; between November 1985 and April 1987, however, 62 isolates showed decreased susceptibility to cffotaximes, and these enzymes were designated EBS-Bla.
Abstract: Before 1985 at the Pitie-Salpetriere Hospital in Paris (2,400 beds), resistance to cefotaxime in clinical isolates of Enterobacteriaceae involved only species producing inducible class 1 beta-lactamase. Between November 1985 and April 1987, however, 62 isolates (57 of Klebsiella pneumoniae and five of Escherichia coli) showed decreased susceptibility to cefotaxime (mean MIC, 8-16 micrograms/mL). The transferability of cefotaxime resistance in E. coli K12 was demonstrated for 15 of 16 selected isolates. By isoelectric focusing using iodometric detection with 20 mg of ceftriaxone/100 mL and determination of substrate and inhibition profiles, three beta-lactamases mediating cefotaxime resistance were identified as SHV-2 (isoelectric point [pI] 7.6), CTX-1 (pI 6.3), and "SHV-2-type" or SHV-3 (pI 6.98). The three beta-lactamases hydrolyzed penicillins and cephalosporins (including cefotaxime and ceftriaxone) and were therefore designated "extended broad-spectrum beta-lactamases" (EBS-Bla). The enzymes conferred to derivatives a high level of resistance to amoxicillin, ticarcillin, piperacillin, and cephalothin and a decreased degree of susceptibility (i.e., MICs increased by 10- to 800-fold) to cefotaxime, ceftriaxone, ceftazidime, and aztreonam. These beta-lactamases did not affect the activity of cephamycins (cefoxitin, cefotetan, moxalactam) or imipenem. Synergy between clavulanate or sulbactam (2 micrograms/mL) and amoxicillin was greater against derivatives producing EBS-Bla than against those producing TEM-1, TEM-2, or SHV-1; this synergy was greater with clavulanate than with sulbactam against derivatives producing SHV-2 and the SHV-2-type enzyme but was similar with clavulanate and sulbactam against those producing CTX-1. A double-disk synergy test performed with cefotaxime and Augmentin disks (placed 30 mm apart, center to center) seemed a useful and specific test for the detection of strains producing EBS-Bla.

1,632 citations

Journal ArticleDOI
TL;DR: An important task of the clinical microbiology laboratory is the performance of antimicrobial susceptibility testing of significant bacterial isolates to detect possible drug resistance in common pathogens and to assure susceptibility to drugs of choice for particular infections.
Abstract: An important task of the clinical microbiology laboratory is the performance of antimicrobial susceptibility testing of significant bacterial isolates. The goals of testing are to detect possible drug resistance in common pathogens and to assure susceptibility to drugs of choice for particular infections. The most widely used testing methods include broth microdilution or rapid automated instrument methods that use commercially marketed materials and devices. Manual methods that provide flexibility and possible cost savings include the disk diffusion and gradient diffusion methods. Each method has strengths and weaknesses, including organisms that may be accurately tested by the method. Some methods provide quantitative results (eg, minimum inhibitory concentration), and all provide qualitative assessments using the categories susceptible, intermediate, or resistant. In general, current testing methods provide accurate detection of common antimicrobial resistance mechanisms. However, newer or emerging mechanisms of resistance require constant vigilance regarding the ability of each test method to accurately detect resistance.

1,444 citations