scispace - formally typeset
Search or ask a question
Author

J D O'Connor

Bio: J D O'Connor is an academic researcher from Cornell University. The author has contributed to research in topics: Microplastics & Environmental science. The author has an hindex of 8, co-authored 8 publications receiving 5490 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate and Protein System has a submodel that predicts rates of feedstuff degradation in the rumen, the passage of undegraded feed to the lower gut, and the amount of ME and protein that is available to the animal.
Abstract: The Cornell Net Carbohydrate and Protein System (CNCPS) has a submodel that predicts rates of feedstuff degradation in the rumen, the passage of undegraded feed to the lower gut, and the amount of ME and protein that is available to the animal. In the CNCPS, structural carbohydrate (SC) and nonstructural carbohydrate (NSC) are estimated from sequential NDF analyses of the feed. Data from the literature are used to predict fractional rates of SC and NSC degradation. Crude protein is partitioned into five fractions. Fraction A is NPN, which is trichloroacetic (TCA) acid-soluble N. Unavailable or protein bound to cell wall (Fraction C) is derived from acid detergent insoluble nitrogen (ADIP), and slowly degraded true protein (Fraction B3) is neutral detergent insoluble nitrogen (NDIP) minus Fraction C. Rapidly degraded true protein (Fraction B1) is TCA-precipitable protein from the buffer-soluble protein minus NPN. True protein with an intermediate degradation rate (Fraction B2) is the remaining N. Protein degradation rates are estimated by an in vitro procedure that uses Streptomyces griseus protease, and a curve-peeling technique is used to identify rates for each fraction. The amount of carbohydrate or N that is digested in the rumen is determined by the relative rates of degradation and passage. Ruminal passage rates are a function of DMI, particle size, bulk density, and the type of feed that is consumed (e.g., forage vs cereal grain).

3,354 citations

Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate and Protein System (CNCPS) has a kinetic submodel that predicts ruminal fermentation and the protein-sparing effect of ionophores is accommodated by decreasing the rate of peptide uptake by 34%.
Abstract: The Cornell Net Carbohydrate and Protein System (CNCPS) has a kinetic submodel that predicts ruminal fermentation. The ruminal microbial population is divided into bacteria that ferment structural carbohydrate (SC) and those that ferment nonstructural carbohydrate (NSC). Protozoa are accommodated by a decrease in the theoretical maximum growth yield (.50 vs .40 g of cells per gram of carbohydrate fermented), and the yields are adjusted for maintenance requirements (.05 vs .150 g of cell dry weight per gram of carbohydrate fermented per hour for SC and NSC bacteria, respectively). Bacterial yield is decreased when forage NDF is < 20% (2.5% for every 1% decrease in NDF). The SC bacteria utilize only ammonia as a N source, but the NSC bacteria can utilize either ammonia or peptides. The yield of NSC bacteria is enhanced by as much as 18.7% when proteins or peptides are available. The NSC bacteria produce less ammonia when the carbohydrate fermentation (growth) rate is rapid, but 34% of the ammonia production is insensitive to the rate of carbohydrate fermentation. Ammonia production rates are moderated by the rate of peptide and amino acid uptake (.07 g of peptide per gram of cells per hour), and peptides and amino acids can pass out of the rumen if the rate of proteolysis is faster than the rate of peptide utilization. The protein-sparing effect of ionophores is accommodated by decreasing the rate of peptide uptake by 34%. Validation with published data of microbial flow from the rumen gave a regression with a slope of .94 and an r2 of .88.

1,283 citations

Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate and Protein System (CNCPS) has equations for predicting nutrient requirements, feed intake, and feed utilization over wide variations in cattle, feed carbohydrate and protein fractions and their digestion and passage rates, and environmental conditions.
Abstract: The Cornell Net Carbohydrate and Protein System (CNCPS) has equations for predicting nutrient requirements, feed intake, and feed utilization over wide variations in cattle (frame size, body condition, and stage of growth), feed carbohydrate and protein fractions and their digestion and passage rates, and environmental conditions. Independent data were used to validate the ability of the CNCPS to predict responses compared to National Research Council (NRC) systems. With DMI in steers, the CNCPS had a 12% lower standard error of the Y estimate (Sy.x) and three percentage units less bias than the NRC system. For DMI in heifers, both systems had a similar Sy.x but the NRC had four percentage units less bias. With lactating dairy cows' DMI, the CNCPS had a 12% lower Sy.x. Observed NEm requirement averaged 5% under NRC and 6% under CNCPS predicted values at temperatures above 9 degrees C but were 18% over NRC and 9% under CNCPS at temperatures under 9 degrees C. Energy retained was predicted with an R2 of .80 and .95 and a bias of 8 and 4% for the NRC and CNCPS, respectively. Protein retained was predicted with an R2 of .75 and .85 with a bias of 0 and -1% for NRC and CNCPS, respectively. Biases due to frame size, implant, or NEg were small. Body condition scores predicted body fat percentage in dairy cows with an R2 of .93 and a Sy.x of 2.35% body fat. The CNCPS predicted metabolizable protein allowable ADG with a bias of 1.6% with a Sy.x of .07 kg compared to values of -30% and .10 kg, respectively for the NRC system.

641 citations

Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate and Protein System was modified to include an amino acid submodel for predicting the adequacy of absorbed essential amino acids in cattle diets and ideas for further model improvements and research in amino acid metabolism were presented.
Abstract: The Cornell Net Carbohydrate and Protein System was modified to include an amino acid submodel for predicting the adequacy of absorbed essential amino acids in cattle diets. Equations for predicting the supply of and requirements for ab- sorbed essential amino acids are described and presented. The model was evaluated for its ability to predict observed duodenal flows of nitrogen, nonam- monia nitrogen, bacterial nitrogen, dietary nonammo- nia nitrogen, and individual essential amino acids. Model-predicted nitrogen, nonammonia nitrogen, bac- terial nitrogen, and dietary nonammonia nitrogen explained 93.2, 94.6, 76.4, and 79.3% of the observed duodenal flows, respectively, based on R2 values from predicted vs observed regression analysis. Based on slopes of regression lines, model-predicted duodenal nitrogen and nonammonia nitrogen were different from observed duodenal flows (P < .05), whereas model-predicted bacterial nitrogen and dietary nonam- monia nitrogen were not different from observed duodenal flows ( P < .05). Model-predicted duodenal flows of individual essential amino acids explained 81 to 90% of variation in observed duodenal amino acid flows. Based on slopes of regression lines, model- predicted duodenal threonine, leucine, and arginine were the only amino acids different from observed duodenal flows (P < .05). Ideas for further model improvements and research in amino acid metabolism were also presented.

256 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and beta-glucans now are available and are also of interest in rumen fermentation.

23,302 citations

Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate and Protein System has a submodel that predicts rates of feedstuff degradation in the rumen, the passage of undegraded feed to the lower gut, and the amount of ME and protein that is available to the animal.
Abstract: The Cornell Net Carbohydrate and Protein System (CNCPS) has a submodel that predicts rates of feedstuff degradation in the rumen, the passage of undegraded feed to the lower gut, and the amount of ME and protein that is available to the animal. In the CNCPS, structural carbohydrate (SC) and nonstructural carbohydrate (NSC) are estimated from sequential NDF analyses of the feed. Data from the literature are used to predict fractional rates of SC and NSC degradation. Crude protein is partitioned into five fractions. Fraction A is NPN, which is trichloroacetic (TCA) acid-soluble N. Unavailable or protein bound to cell wall (Fraction C) is derived from acid detergent insoluble nitrogen (ADIP), and slowly degraded true protein (Fraction B3) is neutral detergent insoluble nitrogen (NDIP) minus Fraction C. Rapidly degraded true protein (Fraction B1) is TCA-precipitable protein from the buffer-soluble protein minus NPN. True protein with an intermediate degradation rate (Fraction B2) is the remaining N. Protein degradation rates are estimated by an in vitro procedure that uses Streptomyces griseus protease, and a curve-peeling technique is used to identify rates for each fraction. The amount of carbohydrate or N that is digested in the rumen is determined by the relative rates of degradation and passage. Ruminal passage rates are a function of DMI, particle size, bulk density, and the type of feed that is consumed (e.g., forage vs cereal grain).

3,354 citations

Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate Protein Model (Chalupa et al., 1991) has developed the need for uniform procedures to partition feed nitrogen into A, B, and C fractions (Pichard and Van Soest, 1977) as mentioned in this paper.

2,282 citations

Journal ArticleDOI
TL;DR: The Cornell Net Carbohydrate and Protein System (CNCPS) has a kinetic submodel that predicts ruminal fermentation and the protein-sparing effect of ionophores is accommodated by decreasing the rate of peptide uptake by 34%.
Abstract: The Cornell Net Carbohydrate and Protein System (CNCPS) has a kinetic submodel that predicts ruminal fermentation. The ruminal microbial population is divided into bacteria that ferment structural carbohydrate (SC) and those that ferment nonstructural carbohydrate (NSC). Protozoa are accommodated by a decrease in the theoretical maximum growth yield (.50 vs .40 g of cells per gram of carbohydrate fermented), and the yields are adjusted for maintenance requirements (.05 vs .150 g of cell dry weight per gram of carbohydrate fermented per hour for SC and NSC bacteria, respectively). Bacterial yield is decreased when forage NDF is < 20% (2.5% for every 1% decrease in NDF). The SC bacteria utilize only ammonia as a N source, but the NSC bacteria can utilize either ammonia or peptides. The yield of NSC bacteria is enhanced by as much as 18.7% when proteins or peptides are available. The NSC bacteria produce less ammonia when the carbohydrate fermentation (growth) rate is rapid, but 34% of the ammonia production is insensitive to the rate of carbohydrate fermentation. Ammonia production rates are moderated by the rate of peptide and amino acid uptake (.07 g of peptide per gram of cells per hour), and peptides and amino acids can pass out of the rumen if the rate of proteolysis is faster than the rate of peptide utilization. The protein-sparing effect of ionophores is accommodated by decreasing the rate of peptide uptake by 34%. Validation with published data of microbial flow from the rumen gave a regression with a slope of .94 and an r2 of .88.

1,283 citations

01 Jan 1991
TL;DR: In this paper, a new enzyme, Bacillus subtilis enzyme Type IIIA (XIA), has been proposed to replace the original XIA and has received AOAC approval and is rapidly displacing other amylases.
Abstract: There is a need to standardize the NDF procedure. Procedures have varied because of the use of different amylases in attempts to remove starch interference. 'Ihe original Bacillus subtilis enzyme Type IIIA (XIA) no longer is available and has been replaced by a less effective enzyme. For fiber work, a new enzyme' has received AOAC approval and is rapidly displacing other amylases in analytical work. This enzyme is available from Sigma (Number A3306, Sigma Chemical Co., St. Louis, MO). The original publications for NDF and ADF (43, 53) and the Agricultural Handbook 379 (14) are obsolete and of historical interest only. Up to date procedures should be followed. Tnethylene glycol has replaced 2-ethoxyethanol because of reported toxicity. Considerable development in regard to fiber methods has occurred over the past 5 yr because of a redefinition of dietary fiber for man and monogastric animals that includes lignin and all polysaccharides resistant to mammalian digestive enzymes. In addition to NDF, new improved methods for total dietary fiber and nonstarch polysaccharides including pectin and B-glucans now are available. The latter are also of interest in rumen fermentation. Unlike starch.

1,257 citations