scispace - formally typeset
Search or ask a question
Author

J. D. Robbins

Bio: J. D. Robbins is an academic researcher. The author has contributed to research in topics: Inter frame. The author has an hindex of 1, co-authored 1 publications receiving 552 citations.
Topics: Inter frame

Papers
More filters
Journal ArticleDOI
TL;DR: Methods of estimating displacements of moving objects from one frame to the next in a television scene and using such displacements for frame-to-frame prediction by a recursive algorithm are presented which make it attractive for hardware implementation.
Abstract: We present methods of estimating displacements of moving objects from one frame to the next in a television scene and using such displacements for frame-to-frame prediction. Displacement is estimated by a recursive algorithm which seeks to minimize a functional of the prediction error. Several simplifications of the algorithm are presented which make it attractive for hardware implementation. Performance of the algorithm is evaluated by computer simulations on two sequences of moving images containing various amounts and types of motion. In both cases, the use of displacement-based (or motion-compensated) prediction results in bit rates that are 22 to 50 percent lower than those obtained by simple “frame-difference” prediction, which is used commonly in the interframe coders.

553 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for finding the optical flow pattern is presented which assumes that the apparent velocity of the brightness pattern varies smoothly almost everywhere in the image, and an iterative implementation is shown which successfully computes the Optical Flow for a number of synthetic image sequences.

10,727 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: The motion compensation is applied for analysis and design of a hybrid coding scheme and the results show a factor of two gain at low bit rates.
Abstract: A new technique for estimating interframe displacement of small blocks with minimum mean square error is presented. An efficient algorithm for searching the direction of displacement has been described. The results of applying the technique to two sets of images are presented which show 8-10 dB improvement in interframe variance reduction due to motion compensation. The motion compensation is applied for analysis and design of a hybrid coding scheme and the results show a factor of two gain at low bit rates.

1,883 citations

Journal ArticleDOI
TL;DR: The computation of optical flow is investigated in this survey: widely known methods for estimating optical flow are classified and examined by scrutinizing the hypothesis and assumptions they use.
Abstract: Two-dimensional image motion is the projection of the three-dimensional motion of objects, relative to a visual sensor, onto its image plane. Sequences of time-orderedimages allow the estimation of projected two-dimensional image motion as either instantaneous image velocities or discrete image displacements. These are usually called the optical flow field or the image velocity field. Provided that optical flow is a reliable approximation to two-dimensional image motion, it may then be used to recover the three-dimensional motion of the visual sensor (to within a scale factor) and the three-dimensional surface structure (shape or relative depth) through assumptions concerning the structure of the optical flow field, the three-dimensional environment, and the motion of the sensor. Optical flow may also be used to perform motion detection, object segmentation, time-to-collision and focus of expansion calculations, motion compensated encoding, and stereo disparity measurement. We investigate the computation of optical flow in this survey: widely known methods for estimating optical flow are classified and examined by scrutinizing the hypothesis and assumptions they use. The survey concludes with a discussion of current research issues.

1,317 citations

Journal ArticleDOI
TL;DR: First, the concept of vector quantization is introduced, then its application to digital images is explained, and the emphasis is on the usefulness of the vector quantification when it is combined with conventional image coding techniques, orWhen it is used in different domains.
Abstract: A review of vector quantization techniques used for encoding digital images is presented. First, the concept of vector quantization is introduced, then its application to digital images is explained. Spatial, predictive, transform, hybrid, binary, and subband vector quantizers are reviewed. The emphasis is on the usefulness of the vector quantization when it is combined with conventional image coding techniques, or when it is used in different domains. >

1,102 citations