scispace - formally typeset
Search or ask a question
Author

J. D. Smyth

Bio: J. D. Smyth is an academic researcher from Imperial College London. The author has contributed to research in topics: Echinococcus granulosus & Viral tegument. The author has an hindex of 28, co-authored 47 publications receiving 3795 citations. Previous affiliations of J. D. Smyth include University of London & Australian National University.

Papers
More filters
Book
01 Jan 1966
TL;DR: The physiology of trematodes is studied to determine the phytochemical properties of the trematode and its role in the immune response to infection.
Abstract: The physiology of trematodes , The physiology of trematodes , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

349 citations

Book
28 Jul 1989
TL;DR: In this paper, the adult cestode in its environment is shown to have a special structural features relevant to its physiology, such as proteins and nucleic acids, and the adult metabolism and chemical composition lipid metabolism.
Abstract: Preface Acknowledgements 1. The cestodes: general considerations 2. The adult cestode: special structural features relevant to its physiology 3. The adult cestode in its environment 4. The adult: general metabolism and chemical composition lipid metabolism 5. The adult: carbohydrate metabolism 6. The adult: proteins and nucleic acids 7. The biology of the egg 8. Developmental biology of larvae 9. Development within definitive host 10. Cultivation of cestodes in vitro 11. Immunobiology of cestodes References Index.

288 citations

Book
01 Jan 1962
TL;DR: An introduction to animal parasitology and a meta-analyses of the immune response to infectious disease.
Abstract: Introduction to animal parasitology , Introduction to animal parasitology , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

267 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Various aspects of human echinococcosis are discussed in this review, including data on the infectivity of genetic variants of E. granulosus to humans, the increasing invasion of cities in Europe and Japan by red foxes, the main definitive hosts ofE.
Abstract: Echinococcosis in humans is a zoonotic infection caused by larval stages (metacestodes) of cestode species of the genus Echinococcus. Cystic echinococcosis (CE) is caused by Echinococcus granulosus, alveolar echinococcosis (AE) is caused by E. multilocularis, and polycystic forms are caused by either E. vogeli or E. oligarthrus. In untreated cases, AE has a high mortality rate. Although control is essentially feasible, CE remains a considerable health problem in many regions of the northern and southern hemispheres. AE is restricted to the northern hemisphere regions of North America and Eurasia. Recent studies have shown that E. multilocularis, the causative agent of AE, is more widely distributed than previously thought. There are also some hints of an increasing significance of polycystic forms of the disease, which are restricted to Central and South America. Various aspects of human echinococcosis are discussed in this review, including data on the infectivity of genetic variants of E. granulosus to humans, the increasing invasion of cities in Europe and Japan by red foxes, the main definitive hosts of E. multilocularis, and the first demonstration of urban cycles of the parasite. Examples of emergence or reemergence of CE are presented, and the question of potential spreading of E. multilocularis is critically assessed. Furthermore, information is presented on new and improved tools for diagnosing the infection in final hosts (dogs, foxes, and cats) by coproantigen or DNA detection and the application of molecular techniques to epidemiological studies. In the clinical field, the available methods for diagnosing human CE and AE are described and the treatment options are summarized. The development of new chemotherapeutic options for all forms of human echinococcosis remains an urgent requirement. A new option for the control of E. granulosus in the intermediate host population (mainly sheep and cattle) is vaccination. Attempts are made to reduce the prevalence of E. multilocualaris in fox populations by regular baiting with an anthelmintic (praziquantel). Recent data have shown that this control option may be used in restricted areas, for example in cities, with the aim of reducing the infection risk for humans.

1,591 citations

Journal ArticleDOI
22 Mar 1990-Nature
TL;DR: It is shown that in the three-spined stickleback (Gasterosteus aculeatus) the intensity of male red breeding coloration positively correlates with physical condition, and the females recognize the formerly parasitized males by the lower intensity of theirbreeding coloration.
Abstract: AN important problem in evolutionary biology since the time of Darwin has been to understand why females preferentially mate with males handicapped by secondary sexual ornaments1–3. One hypothesis of sexual selection theory is that these ornaments reliably reveal the male's condition4–6, which can be affected for example by parasites4,7–13. Here we show that in the three-spined stickleback (Gasterosteus aculeatus) the intensity of male red breeding coloration positively correlates with physical condition. Gravid females base their active mate choice on the intensity of the male's red coloration. Choice experiments under green light prevent the use of red colour cues by females, and males that were previously preferred are now chosen no more than randomly, although the courtship behaviour of the males remains unchanged. Parasitieation causes a deterioration in the males' condition and a decrease in the intensity of their red coloration. Tests under both lighting conditions reveal that the females recognize the formerly parasitized males by the lower intensity of their breeding coloration. Female sticklebacks possibly select a male with a good capacity for paternal care14 but if there is additive genetic variation for parasite resistance, then they might also select for resistance genes, as proposed by Hamilton and Zuk4.

831 citations

Book ChapterDOI
TL;DR: This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology.
Abstract: Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology.

601 citations

Journal ArticleDOI
TL;DR: Little conclusive evidence is found for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism, and a case study is provided to summarise the current state of knowledge.
Abstract: Fish serve as hosts to a range of parasites that are taxonomically diverse and that exhibit a wide variety of life cycle strategies. Whereas many of these parasites are passed directly between ultimate hosts, others need to navigate through a series of intermediate hosts before reaching a host in (or on) which they can attain sexual maturity. The realisation that parasites need not have evolved to minimise their impact on hosts to be successful, and in many cases may even have a requirement for their hosts to be eaten by specific predators to ensure transmission, has renewed interest in the evolutionary basis of infection-associated host behaviour. Fishes have proved popular models for the experimental examination of such hypotheses, and parasitic infections have been demonstrated to have consequences for almost every aspect of fish behaviour. Despite a scarcity of knowledge regarding the mechanistic basis of such behaviour changes in most cases, and an even lower understanding of their ecological consequences, there can be little doubt that infection-associated behaviour changes have the potential to impact severely on the ecology of infected fishes. Changes in foraging efficiency, time budget, habitat selection, competitive ability, predator-prey relationships, swimming performance and sexual behaviour and mate choice have all been associated with – and in some cases been shown to be a result of – parasite infections, and are reviewed here in some detail. Since the behavioural consequences of infections are exposed to evolutionary selection pressures in the same way as are other phenotypic traits, few behavioural changes will be evolutionarily neutral and host behaviour changes that facilitate transmission should be expected. Despite this expectation, we have found little conclusive evidence for the Parasite Increased Trophic Transmission (PITT) hypothesis in fishes, though recent studies suggest it is likely to be an important mechanism. Additionally, since the fitness consequences of the many behavioural changes described have rarely been quantified, their evolutionary and ecological significance is effectively unknown. Potential hosts may also change their behaviour in the presence of infective parasite stages, if they adopt tactics to reduce exposure risk. Such `behavioural resistance', which may take the form of habitat avoidance, prey selectivity or avoidance of infected individuals, can be viewed as behavioural change associated with the threat of being parasitised, and so is included here. Actually harbouring infections may also stimulate fishes to perform certain types of simple or complex behaviours aimed at removing parasites, such as substrate scraping or the visitation of cleaning stations, although the efficacy of the latter as a parasite removal strategy is currently subject to a good deal of debate. The effects parasites have on shoaling behaviour of host fish have attracted a good deal of attention from researchers, and we have provided a case study to summarise the current state of knowledge. Parasites have been shown to affect most of the antipredator effects of shoaling (such as vigilance, co-ordinated evasion and predator confusion) and can also impair an individual's foraging ability. It therefore seems unsurprising that, in a number of species avoidance of parasitised individuals has evolved which may explain the occurrence of parasite-assorted shoals in the field. Parasitised fish are found more often in peripheral shoal positions and show a reduced tendency for shoaling in some fish species. Given the array of host behaviours that may be changed, the fitness consequences of shoal membership for parasitised hosts and their parasites are not always easy to predict, yet an understanding of these is important before we can make predictions regarding the ecological impact of infections on host fish populations. Clearly, there remain many gaps in our knowledge regarding the effects of parasites on the behaviour of host fish. We believe that a much greater understanding of the importance of infection-associated behaviour changes in fish could be gained from high quality research in comparatively few areas. We have completed our review by highlighting the key research topics that we believe should attract new research in this field.

468 citations

Journal ArticleDOI
TL;DR: The outcome of recent molecular epidemiological studies has served to reinforce proposals made ten years ago to revise the taxonomy of Echinococcus, and to recognize the contribution of early taxonomists.

460 citations