scispace - formally typeset
Search or ask a question
Author

J. Dik F. Habbema

Bio: J. Dik F. Habbema is an academic researcher from Erasmus University Rotterdam. The author has contributed to research in topics: Population & Pregnancy. The author has an hindex of 77, co-authored 220 publications receiving 23275 citations. Previous affiliations of J. Dik F. Habbema include Leiden University & Indiana University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that split-sample validation is inefficient, and bootstrapping is recommended for estimation of internal validity of a predictive logistic regression model.

2,155 citations

Journal ArticleDOI
TL;DR: Seven statistical models showed that both screening mammography and treatment have helped reduce the rate of death from breast cancer in the United States.
Abstract: BACKGROUND We used modeling techniques to assess the relative and absolute contributions of screening mammography and adjuvant treatment to the reduction in breast-cancer mortality in the United States from 1975 to 2000. METHODS A consortium of investigators developed seven independent statistical models of breast-cancer incidence and mortality. All seven groups used the same sources to obtain data on the use of screening mammography, adjuvant treatment, and benefits of treatment with respect to the rate of death from breast cancer. RESULTS The proportion of the total reduction in the rate of death from breast cancer attributed to screening varied in the seven models from 28 to 65 percent (median, 46 percent), with adjuvant treatment contributing the rest. The variability across models in the absolute contribution of screening was larger than it was for treatment, reflecting the greater uncertainty associated with estimating the benefit of screening. CONCLUSIONS Seven statistical models showed that both screening mammography and treatment have helped reduce the rate of death from breast cancer in the United States.

2,105 citations

Journal ArticleDOI
TL;DR: In this article, a logistic regression model was proposed to predict mortality and unfavorable outcome according to the Glasgow Outcome Scale at 6 mo after traumatic brain injury (TBI) in 8,509 patients.
Abstract: Background Traumatic brain injury (TBI) is a leading cause of death and disability. A reliable prediction of outcome on admission is of great clinical relevance. We aimed to develop prognostic models with readily available traditional and novel predictors. Methods and Findings Prospectively collected individual patient data were analyzed from 11 studies. We considered predictors available at admission in logistic regression models to predict mortality and unfavorable outcome according to the Glasgow Outcome Scale at 6 mo after injury. Prognostic models were developed in 8,509 patients with severe or moderate TBI, with cross-validation by omission of each of the 11 studies in turn. External validation was on 6,681 patients from the recent Medical Research Council Corticosteroid Randomisation after Significant Head Injury (MRC CRASH) trial. We found that the strongest predictors of outcome were age, motor score, pupillary reactivity, and CT characteristics, including the presence of traumatic subarachnoid hemorrhage. A prognostic model that combined age, motor score, and pupillary reactivity had an area under the receiver operating characteristic curve (AUC) between 0.66 and 0.84 at cross-validation. This performance could be improved (AUC increased by approximately 0.05) by considering CT characteristics, secondary insults (hypotension and hypoxia), and laboratory parameters (glucose and hemoglobin). External validation confirmed that the discriminative ability of the model was adequate (AUC 0.80). Outcomes were systematically worse than predicted, but less so in 1,588 patients who were from high-income countries in the CRASH trial. Conclusions Prognostic models using baseline characteristics provide adequate discrimination between patients with good and poor 6 mo outcomes after TBI, especially if CT and laboratory findings are considered in addition to traditional predictors. The model predictions may support clinical practice and research, including the design and analysis of randomized controlled trials.

999 citations

Journal ArticleDOI
TL;DR: Seven statistical models showed that both screening mammography and treatment have helped reduce the rate of death from breast cancer in the United States.
Abstract: In several countries, a drop in mortality from breast cancer has been documented starting in 1975. Both early detection by mammographic screening and advances in management are plausible explanations. The National Institutes of Health have used a competitive peer review process to develop 7 independent statistical models of breast cancer incidence and mortality. A consortium of investigators used the same sources to obtain data on screening mammography, adjuvant treatment, and health benefits relating to the rate of death from breast cancer in the years 1975-2000. The use of mammographic screening in women age 40 and over increased markedly over the period 1985 to 2000. The use of adjuvant treatment depended on numerous factors beside the calendar year, including age, tumor stage, and estrogen-receptor status. The proportion of women given adjuvant treatment increased from virtually none in 1975 to approximately 80% in 2000. By 2000, half of all women were using tamoxifen. All 7 models predicted similar proportional reductions in mortality from a combination of screening and adjuvant therapy. The proportion of overall reduction in breast cancer deaths ascribed to screening ranged from 28% to 65% (median, 46%). The remaining decrease in mortality was associated with adjuvant treatment. Variation between models in the absolute contribution of screening was greater than for treatment. Combined screening and adjuvant therapy reduced breast cancer mortality by 25 to 38% (median, 30%). The proportion of decreased mortality ascribed to adjuvant treatment was 12 to 21% (median, 19%). For each of the 7 models, the combination of screening and adjuvant treatment lowered mortality slightly less than the sum of contributions from screening and adjuvant therapy alone. The investigators conclude from these findings that both mammographic screening and adjuvant treatment have helped to lower deaths from breast cancer in the United States.

925 citations

Journal ArticleDOI
TL;DR: It is concluded that schistosomiasis remains an important public health problem in sub-Saharan Africa and the mortality rates due to non-functioning kidney and haematemesis at 150000 and 130000 per year are estimated.

867 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Abstract: Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.

23,203 citations

Book
23 Sep 2019
TL;DR: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.
Abstract: The Cochrane Handbook for Systematic Reviews of Interventions is the official document that describes in detail the process of preparing and maintaining Cochrane systematic reviews on the effects of healthcare interventions.

21,235 citations

Journal ArticleDOI
TL;DR: Overall cancer incidence trends are stable in women, but declining by 3.1% per year in men, much of which is because of recent rapid declines in prostate cancer diagnoses, and brain cancer has surpassed leukemia as the leading cause of cancer death among children and adolescents.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in the United States. Overall cancer incidence trends (13 oldest SEER registries) are stable in women, but declining by 3.1% per year in men (from 2009-2012), much of which is because of recent rapid declines in prostate cancer diagnoses. The cancer death rate has dropped by 23% since 1991, translating to more than 1.7 million deaths averted through 2012. Despite this progress, death rates are increasing for cancers of the liver, pancreas, and uterine corpus, and cancer is now the leading cause of death in 21 states, primarily due to exceptionally large reductions in death from heart disease. Among children and adolescents (aged birth-19 years), brain cancer has surpassed leukemia as the leading cause of cancer death because of the dramatic therapeutic advances against leukemia. Accelerating progress against cancer requires both increased national investment in cancer research and the application of existing cancer control knowledge across all segments of the population.

14,664 citations

Journal ArticleDOI
TL;DR: Overall cancer death rates have declined 20% from their peak in 1991 to 2009 and can be accelerated by applying existing cancer control knowledge across all segments of the population, with an emphasis on those groups in the lowest socioeconomic bracket and other underserved populations.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data from the National Center for Health Statistics. A total of 1,660,290 new cancer cases and 580,350 cancer deaths are projected to occur in the United States in 2013. During the most recent 5 years for which there are data (2005-2009), delay-adjusted cancer incidence rates declined slightly in men (by 0.6% per year) and were stable in women, while cancer death rates decreased by 1.8% per year in men and by 1.5% per year in women. Overall, cancer death rates have declined 20% from their peak in 1991 (215.1 per 100,000 population) to 2009 (173.1 per 100,000 population). Death rates continue to decline for all 4 major cancer sites (lung, colorectum, breast, and prostate). Over the past 10 years of data (2000-2009), the largest annual declines in death rates were for chronic myeloid leukemia (8.4%), cancers of the stomach (3.1%) and colorectum (3.0%), and non-Hodgkin lymphoma (3.0%). The reduction in overall cancer death rates since 1990 in men and 1991 in women translates to the avoidance of approximately 1.18 million deaths from cancer, with 152,900 of these deaths averted in 2009 alone. Further progress can be accelerated by applying existing cancer control knowledge across all segments of the population, with an emphasis on those groups in the lowest socioeconomic bracket and other underserved populations.

11,556 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate decreased from 215.1 (per 100,000 population) in 1991 to 168.7 in 2011, a total relative decline of 22%.
Abstract: Each year the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. A total of 1,658,370 new cancer cases and 589,430 cancer deaths are projected to occur in the United States in 2015. During the most recent 5 years for which there are data (2007-2011), delay-adjusted cancer incidence rates (13 oldest SEER registries) declined by 1.8% per year in men and were stable in women, while cancer death rates nationwide decreased by 1.8% per year in men and by 1.4% per year in women. The overall cancer death rate decreased from 215.1 (per 100,000 population) in 1991 to 168.7 in 2011, a total relative decline of 22%. However, the magnitude of the decline varied by state, and was generally lowest in the South (∼15%) and highest in the Northeast (≥20%). For example, there were declines of 25% to 30% in Maryland, New Jersey, Massachusetts, New York, and Delaware, which collectively averted 29,000 cancer deaths in 2011 as a result of this progress. Further gains can be accelerated by applying existing cancer control knowledge across all segments of the population.

10,989 citations