scispace - formally typeset
Search or ask a question
Author

J E de Vries

Bio: J E de Vries is an academic researcher from Harvard University. The author has contributed to research in topics: Cytotoxic T cell & T cell. The author has an hindex of 53, co-authored 92 publications receiving 17634 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.
Abstract: In the present study we demonstrate that human monocytes activated by lipopolysaccharides (LPS) were able to produce high levels of interleukin 10 (IL-10), previously designated cytokine synthesis inhibitory factor (CSIF), in a dose dependent fashion. IL-10 was detectable 7 h after activation of the monocytes and maximal levels of IL-10 production were observed after 24-48 h. These kinetics indicated that the production of IL-10 by human monocytes was relatively late as compared to the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, tumor necrosis factor alpha (TNF alpha), and granulocyte colony-stimulating factor (G-CSF), which were all secreted at high levels 4-8 h after activation. The production of IL-10 by LPS activated monocytes was, similar to that of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF, inhibited by IL-4. Furthermore we demonstrate here that IL-10, added to monocytes, activated by interferon gamma (IFN-gamma), LPS, or combinations of LPS and IFN-gamma at the onset of the cultures, strongly inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF at the transcriptional level. Viral-IL-10, which has similar biological activities on human cells, also inhibited the production of TNF alpha and GM-CSF by monocytes following LPS activation. Activation of monocytes by LPS in the presence of neutralizing anti-IL-10 monoclonal antibodies resulted in the production of higher amounts of cytokines relative to LPS treatment alone, indicating that endogenously produced IL-10 inhibited the production of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF alpha, GM-CSF, and G-CSF. In addition, IL-10 had autoregulatory effects since it strongly inhibited IL-10 mRNA synthesis in LPS activated monocytes. Furthermore, endogenously produced IL-10 was found to be responsible for the reduction in class II major histocompatibility complex (MHC) expression following activation of monocytes with LPS. Taken together our results indicate that IL-10 has important regulatory effects on immunological and inflammatory responses because of its capacity to downregulate class II MHC expression and to inhibit the production of proinflammatory cytokines by monocytes.

3,857 citations

Journal ArticleDOI
TL;DR: It is indicated that IL-10 and v-IL-10 can completely prevent antigen-specific T cell proliferation by inhibition of the antigen-presenting capacity of monocytes through downregulation of class II MHC antigens on monocytes.
Abstract: Interleukin 10 (IL-10) and viral IL-10 (v-IL-10) strongly reduced antigen-specific proliferation of human T cells and CD4+ T cell clones when monocytes were used as antigen-presenting cells. In contrast, IL-10 and v-IL-10 did not affect the proliferative responses to antigens presented by autologous Epstein-Barr virus-lymphoblastoid cell line (EBV-LCL). Inhibition of antigen-specific T cell responses was associated with downregulation of constitutive, as well as interferon gamma- or IL-4-induced, class II MHC expression on monocytes by IL-10 and v-IL-10, resulting in the reduction in antigen-presenting capacity of these cells. In contrast, IL-10 and v-IL-10 had no effect on class II major histocompatibility complex (MHC) expression on EBV-LCL. The reduced antigen-presenting capacity of monocytes correlated with a decreased capacity to mobilize intracellular Ca2+ in the responder T cell clones. The diminished antigen-presenting capacities of monocytes were not due to inhibitory effects of IL-10 and v-IL-10 on antigen processing, since the proliferative T cell responses to antigenic peptides, which did not require processing, were equally well inhibited. Furthermore, the inhibitory effects of IL-10 and v-IL-10 on antigen-specific proliferative T cell responses could not be neutralized by exogenous IL-2 or IL-4. Although IL-10 and v-IL-10 suppressed IL-1 alpha, IL-1 beta, tumor necrosis factor alpha (TNF-alpha), and IL-6 production by monocytes, it was excluded that these cytokines played a role in antigen-specific T cell proliferation, since normal antigen-specific responses were observed in the presence of neutralizing anti-IL-1, -IL-6, and -TNF-alpha mAbs. Furthermore, addition of saturating concentrations of IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha to the cultures had no effect on the reduced proliferative T cell responses in the presence of IL-10, or v-IL-10. Collectively, our data indicate that IL-10 and v-IL-10 can completely prevent antigen-specific T cell proliferation by inhibition of the antigen-presenting capacity of monocytes through downregulation of class II MHC antigens on monocytes.

1,981 citations

Journal ArticleDOI
TL;DR: IL-13 is another T-cell-derived cytokine that, in addition to IL-4, efficiently directs naive human B cells to switch to IgG4 and IgE production, suggesting that common signaling pathways may be involved.
Abstract: Recently the cDNA encoding interleukin 13 (IL-13), a T-cell-derived cytokine, was cloned and expressed. The present study demonstrates that IL-13 induces IgG4 and IgE synthesis by human B cells. IL-13-induced IgG4 and IgE synthesis by unfractionated peripheral blood mononuclear cells and highly purified B cells cultured in the presence of activated CD4+ T cells or their membranes. IL-13-induced IgG4 and IgE synthesis is IL-4-independent, since it was not affected by neutralizing anti-IL-4 monoclonal antibody. Highly purified, surface IgD+ B cells could also be induced to produce IgG4 and IgE by IL-13, indicating that the production of these isotypes reflected IgG4 and IgE switching and not a selective outgrowth of committed B cells. IL-4 and IL-13 added together at optimal concentrations had no additive or synergistic effect, suggesting that common signaling pathways may be involved. This notion is supported by the observation that IL-13, like IL-4, induced CD23 expression on B cells and enhanced CD72, surface IgM, and class II major histocompatibility complex antigen expression. In addition, like IL-4, IL-13 induced germ-line IgE heavy-chain gene transcription in highly purified B cells. Collectively, our data indicate that IL-13 is another T-cell-derived cytokine that, in addition to IL-4, efficiently directs naive human B cells to switch to IgG4 and IgE production.

1,005 citations

Journal ArticleDOI
TL;DR: Human CD4+ T cells, activated by allogeneic monocytes in a primary mixed lymphocyte reaction in the presence of exogenous interleukin 10, specifically failed to proliferate after restimulation with the same alloantigens, demonstrating that IL-10 induces T cell anergy and therefore may play an important role in the induction and maintenance of antigen-specific T cell tolerance.
Abstract: Human CD4+ T cells, activated by allogeneic monocytes in a primary mixed lymphocyte reaction in the presence of exogenous interleukin (IL) 10, specifically failed to proliferate after restimulation with the same alloantigens. A comparable state of T cell unresponsiveness could be induced by activation of CD4+ T cells by cross-linked anti-CD3 monoclonal antibodies (mAbs) in the presence of exogenous IL-10. The anergic T cells failed to produce IL-2, IL-5, IL-10, interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-10-induced anergic state was long-lasting. T cell anergy could not be reversed after restimulation of the cells with anti-CD3 and anti-CD28 mAbs, although CD3 and CD28 expression was normal. In addition, restimulation of anergized T cells with anti-CD3 mAbs induced normal Ca2+ fluxes and resulted in increased CD3, CD28, and class II major histocompatibility complex expression, indicating that calcineurin-mediated signaling occurs in these anergic cells. However, the expression of the IL-2 receptor alpha chain was not upregulated, which may account for the failure of exogenous IL-2 to reverse the anergic state. Interestingly, anergic T cells and their nonanergic counterparts showed comparable levels of proliferation and cytokine production after activation with phorbol myristate acetate and Ca2+ ionophore, indicating that a direct activation of a protein kinase C-dependent pathway can overcome the tolerizing effect of IL-10. Taken together, these data demonstrate that IL-10 induces T cell anergy and therefore may play an important role in the induction and maintenance of antigen-specific T cell tolerance.

810 citations

Journal Article
TL;DR: IL-4 is an essential mediator for the IgE synthesis induced in vitro by human TCC and their SUP in the absence of a polyclonal activator, whereas IFN-gamma seems to exert a negative regulatory effect on the production of IgE.
Abstract: The property of 109 CD4+ T cell clones (TCC) to induce IgE synthesis in vitro in human B cells was compared with their ability to produce IL-2, IL-4, and IFN-gamma in their supernatants (SUP) after 24-h stimulation with PHA. A significant positive correlation was found between the property of TCC to induce or enhance spontaneous IgE synthesis and their ability to release IL-4. In contrast, there was an inverse relationship between the IgE helper activity of TCC and their ability to release IFN-gamma, whereas no statistical correlation between the property to induce IgE synthesis and to produce IL-2 was observed. The ability of PHA-SUP from 71 CD4+ TCC to induce IgE synthesis in B cells was also investigated. Twenty-nine SUP (all derived from TCC active on IgE synthesis) induced production of substantial amounts of IgE in target B cells. There was a correlation between the amount of IgE synthesized by B cells in response to these SUP and their IL-4 content. An even higher correlation was found between the IgE synthesis induced by these SUP and the ratio between the amount of IL-4 and IFN-gamma present in the same SUP. Like IL-4-containing SUP, rIL-4 also showed the ability to induce IgE production in B cells from both atopic and nonatopic donors. The addition to B cell cultures of anti-IL-4 antibody virtually abolished not only the IgE synthesis induced by rIL-4, but also that stimulated by TCC and their SUP. In contrast, the IgG synthesis induced by TCC SUP was not or only slightly inhibited by the anti-IL-4 antibody. These data indicate that IL-4 is an essential mediator for the IgE synthesis induced in vitro by human TCC and their SUP in the absence of a polyclonal activator, whereas IFN-gamma seems to exert a negative regulatory effect on the production of IgE.

692 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal ArticleDOI
TL;DR: The evidence in favour of alternative macrophage activation by the TH2-type cytokines interleukin-4 (IL-4) and IL-13 is assessed, and its limits and relevance to a range of immune and inflammatory conditions are defined.
Abstract: The classical pathway of interferon-gamma-dependent activation of macrophages by T helper 1 (T(H)1)-type responses is a well-established feature of cellular immunity to infection with intracellular pathogens, such as Mycobacterium tuberculosis and HIV. The concept of an alternative pathway of macrophage activation by the T(H)2-type cytokines interleukin-4 (IL-4) and IL-13 has gained credence in the past decade, to account for a distinctive macrophage phenotype that is consistent with a different role in humoral immunity and repair. In this review, I assess the evidence in favour of alternative macrophage activation in the light of macrophage heterogeneity, and define its limits and relevance to a range of immune and inflammatory conditions.

5,930 citations

Journal ArticleDOI
31 Oct 1996-Nature
TL;DR: The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses.
Abstract: The existence of subsets of CD4+ helper T lymphocytes that differ in their cytokine secretion patterns and effector functions provides a framework for understanding the heterogeneity of normal and pathological immune responses. Defining the cellular and molecular mechanisms of helper-T-cell differentiation should lead to rational strategies for manipulating immune responses for prophylaxis and therapy.

4,578 citations

Journal ArticleDOI
TL;DR: The four stages of orderly inflammation mediated by macrophages are discussed: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis.
Abstract: Macrophages are strategically located throughout the body tissues, where they ingest and process foreign materials, dead cells and debris and recruit additional macrophages in response to inflammatory signals They are highly heterogeneous cells that can rapidly change their function in response to local microenvironmental signals In this Review, we discuss the four stages of orderly inflammation mediated by macrophages: recruitment to tissues; differentiation and activation in situ; conversion to suppressive cells; and restoration of tissue homeostasis We also discuss the protective and pathogenic functions of the various macrophage subsets in antimicrobial defence, antitumour immune responses, metabolism and obesity, allergy and asthma, tumorigenesis, autoimmunity, atherosclerosis, fibrosis and wound healing Finally, we briefly discuss the characterization of macrophage heterogeneity in humans

4,182 citations

Journal ArticleDOI
TL;DR: A major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events.

4,053 citations