scispace - formally typeset
Search or ask a question
Author

J. E. Krettek

Bio: J. E. Krettek is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Cortex (anatomy) & Rhinal sulcus. The author has an hindex of 3, co-authored 3 publications receiving 2523 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The mediodorsal nucleus of the rat thalamus has been divided into medial, central and lateral segments, and these segments have been shown by experiments using the autoradiographic method of demonstrating axonal connections to project to seven distinct cortical areas covering most of the frontal pole of the hemisphere.
Abstract: The mediodorsal nucleus of the rat thalamus has been divided into medial, central and lateral segments on the basis of its structure and axonal connections, and these segments have been shown by experiments using the autoradiographic method of demonstrating axonal connections to project to seven distinct cortical areas covering most of the frontal pole of the hemisphere. The position and cytoarchitectonic characteristics of these areas are described. The medial segment of the nucleus projects to the prelimbic area (32) on the medial surface of the hemisphere, and to the dorsal agranular insular area, dorsal to the rhinal sulcus on the lateral surface. The lateral segment projects to the anterior cingulate area (area 24) and the medial precentral area on the dorsomedial shoulder of the hemisphere, while the central segment projects to the ventral agranular insular area in the dorsal bank of the rhinal sulcus, and to a lateral part of the orbital cortex further rostrally. (The term "orbital" is used to refer to the cortex on the ventral surface of the frontal pole of the hemisphere.) A ventral part of this orbital cortex also receives fibers from the mediodorsal nucleus, possibly its lateral segment, but the medial part of the orbital cortex, and the ventrolateral orbital area in the fundus of the rhinal sulcus receive projections from the paratenial nucleus and the submedial nucleus, respectively. All of these thalamocortical projections end in layer III, and in the outer part of layer I. The basal nucleus of the ventromedial complex (the thalamic taste relay) has been shown to have a similar laminar projection (layer I and layers III/IV) to the granular insular area immediately dorsal to, but not overlapping, the mediodorsal projection field. However, the principal nucleus of the ventromedial complex appears to project to layer I, and possibly layer VI, of the entire frontal pole of the hemisphere. The anteromedial nucleus does not appear to project to layer III of the projection field of the mediodorsal nucleus, although it may project to layers I and VI, especially in the anterior cingulate and medial precentral areas. A thalamoamygdaloid projection from the medial segment of the mediodorsal nucleus to the basolateral nucleus of the amygdala has also been demonstrated, which reciprocates an amygdalothalamic projection from the basolateral nucleus to the medial segment. The habenular nuclei also appear to project to the central nucleus of the amygdala. These results are discussed in relation to the delineation and subdivision of the prefrontal cortex in the rat, and to amygdalothalamic and amygdalocortical projections which are described in a subsequent paper (Krettek and Price, '77).

1,259 citations

Journal ArticleDOI
TL;DR: Projections are described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to the mediodorsasl thalamic nucleus in the rats.
Abstract: Projections are described from the basolateral, lateral and anterior cortical nuclei of the amygdaloid complex, and from the prepiriform cortex, to several discrete areas of the cerebral cortex in the rat and cat and to the mediodorsal thalamic nucleus in the rat. These projections are very well-defined in their origin, and in their area of laminar pattern of termination. The basolateral amygdaloid nucleus can be divided into anterior and posterior divisions, based on cytoarchitectonic and connectional distinctions. In both the rat and cat the posterior division projects to the prelimbic area (area 32) and the infralimbic area (area 25) on the medical surface of the hemisphere. The anterior division projects more lightly to these areas, but also sends fibers to the dorsal and posterior agranular insular areas and the perirhinal area on the lateral surface. Furthermore, in the cat the perirhinal area is divided into two areas (areas 35 and 36) and the anterior division projects to both of these and also to a ventral part of the granular insular area; this last area is adjacent to, but separate from the auditory insular area and the second cortical taste area. In most of these areas, the fibers from the basolateral nucleus terminate predominantly in two bands: one in the deep part of layer I and layer II, and a heavier band in layer V (in the rat) or layers V and VI (in the cat). The lateral amygdaloid nucleus projects heavily to the perirhinal area, and also to the posterior agranular insular area. These fibers terminate predominantly in the middle layers of the cortex, although the cellular lamination in these two areas is relatively indistinct. The anterior cortical amygdaloid nucleus and the prepiriform cortex both project to the infralimbic area and the ventral agranular insular area, and the anterior cortical nucleus also projects to the posterior agranular area and the perirhinal area. In all of these areas, the fibers from these olfactory-related structures terminate in the middle of layer I. In the rat, the two divisions of the basolateral nucleus also project to the medial segment of the mediodorsal thalamic nucleus, with the anterior division projecting mainly to the posterior part of this segment and the posterior division to the anterior part. The endopiriform nucleus, deep to the prepiriform cortex, projects to the central segment of the mediodorsal nucleus; this may constitute the major olfactory input into the mediodorsal nucleus, since little or no projection could be demonstrated from the prepiriform cortex itself. Projections to the mediodorsal nucleus have not been found in the cat.

781 citations

Journal ArticleDOI
TL;DR: Axonal projections are described from the lateral and hasolateral nuclei of the amygdaloid complex, and from the overlying periamygdaloids and pre‐piriform cortices and the endopiriform nucleus, to the lateral entorhinal area, the ventral part of the subiculum, and the parasubiculum in the cat and rat.
Abstract: Axonal projections are described from the lateral and basolateral nuclei of the amygdaloid complex, and from the overlying periamygdaloid and prepiriform cortices and the endopiriform nucleus, to the lateral entohinal area, the ventral part of the subiculum, and the parasubiculum in the cat and rat. All of these projections have well-defined laminar patterns of termination, which are complementary to those of other projections to the same structure. Based on these results, and on cytoarchitectonic distinctions, the lateral entohinal area has been divided into dorsal, ventral, and ventromedial subdivisions. The olfactory bulb and prepiriform cortex project to layers IA and IB, respectively, of all three subdivisions, but the lateral amygdaloid nucleus has a restricted projection to layer III of the ventral subdivision only. The periamygdaloid cortex projects to layer II of the ventromedial and adjoining parts of the ventral subdivisions. The ventral part of the subiculum receives fibers from the posterior division of the basolateral nucleus, which terminate in the cellular layer and the deep half to one-third of the plexiform layer. The periamygdaloid cortex and the endopiriform nucleus also project to the same part of the subiculum, but these fibers terminate in the outer part of the plexiform layer. None of these projections extend into the dorsal part of the subiculum. The posterior division of the basolateral nucleus also projects to the posterodorsal part of the parasubiculum ("parasubiculum a" of Blackstad, '56). These fibers end in the deeper part of the plexiform layer and the superficial part of the cellular layer.

515 citations


Cited by
More filters
Book
05 Jun 1975
TL;DR: Introduction to synaptic circuits, Gordon M.Shepherd and Christof Koch membrane properties and neurotransmitter actions, David A.Brown and Anthony M.Brown.
Abstract: Introduction to synaptic circuits, Gordon M.Shepherd and Christof Koch membrane properties and neurotransmitter actions, David A.McCormick peripheral ganglia, Paul R.Adams and Christof Koch spinal cord - ventral horn, Robert E.Burke olfactory bulb, Gordon M.Shepherd, and Charles A.Greer retina, Peter Sterling cerebellum, Rodolfo R.Llinas and Kerry D.Walton thalamus, S.Murray Sherman and Christof Koch basal ganglia, Charles J.Wilson olfactory cortex, Lewis B.Haberly hippocampus, Thomas H.Brown and Anthony M.Zador neocortex, Rodney J.Douglas and Kevan A.C.Martin Gordon M.Shepherd. Appendix: Dendretic electrotonus and synaptic integration.

3,241 citations

Book ChapterDOI
TL;DR: It now appears that at the level of the putamen such inputs remain segregated within the "motor" circuit, and it is difficult to imagine how such functional specificity could be maintained in the absence of strict topographic specificity within the sequential projections that comprise these two circuits.
Abstract: The central theme of the "segregated circuits" hypothesis is that structural convergence and functional integration occurs within, rather than between, each of the identified circuits Admittedly, the anatomical evidence upon which this scheme is based remains incomplete The hypothesis continues to be predicated largely on comparisons of anterograde and retrograde labeling studies carried out in different sets of animals Only in the case of the "motor" circuit has evidence for the continuity of the loop been demonstrated directly in individual subjects; for the other circuits, such continuity is inferred from comparisons of data on different components of each circuit obtained in separate experiments Because of the marked compression of pathways leading from cortex through basal ganglia to thalamus, comparisons of projection topography across experimental subjects may be hazardous Definitive tests of the hypothesis of maintained segregation await additional double- and multiple-label tract-tracing experiments wherein the continuity of one circuit, or the segregation of adjacent circuits, can be examined directly in individual subjects It is worthy of note, however, that the few studies to date that have employed this methodology have generated results consistent with the segregated circuits hypothesis Moreover, single cell recordings in behaving animals have shown striking preservation of functional specificity at the level of individual neurons throughout the "motor" and "oculomotor" circuits It is difficult to imagine how such functional specificity could be maintained in the absence of strict topographic specificity within the sequential projections that comprise these two circuits This is not to say, however, that we expect the internal structure of functional channels (eg, the "arm" channel within the "motor" circuit) to have cable-like, point-to-point topography When the grain of analysis is sufficiently fine, anatomical studies have shown repeatedly that the terminal fields of internuclear projections (eg, to striatum, pallidum, nigra, thalamus, etc) often appear patchy and highly divergent, suggesting that neighboring groups of projection cells tend to influence interdigitating clusters of postsynaptic neurons While more intricate and complex than simple point-to-point topography, however, this type arrangement should also be capable of maintaining functional specificity As discussed briefly above, it is not yet clear to what extent the inputs to the "motor" circuit from the different precentral motor fields (eg, MC, SMA, APA) are integrated in their passage through the circuit It now appears that at the level of the putamen such inputs remain segregated(ABSTRACT TRUNCATED AT 400 WORDS)

2,659 citations

Journal ArticleDOI
TL;DR: The OMPFC appears to function as a sensory-visceromotor link, especially for eating, which appears to be critical for the guidance of reward-related behavior and for setting of mood.
Abstract: This paper reviews architectonic subdivisions and connections of the orbital and medial prefrontal cortex (OMPFC) in rats, monkeys and humans. Cortico-cortical connections provide the basis for recognition of 'medial' and 'orbital' networks within the OMPFC. These networks also have distinct connections with structures in other parts of the brain. The orbital network receives sensory inputs from several modalities, including olfaction, taste, visceral afferents, somatic sensation and vision, which appear to be especially related to food or eating. In contrast, the medial network provides the major cortical output to visceromotor structures in the hypothalamus and brainstem. The two networks have distinct connections with areas of the striatum and mediodorsal thalamus. In particular, projections to the nucleus accumbens and the adjacent ventromedial caudate and putamen arise predominantly from the medial network. Both networks also have extensive connections with limbic structures. Based on these and other observations, the OMPFC appears to function as a sensory-visceromotor link, especially for eating. This linkage appears to be critical for the guidance of reward-related behavior and for setting of mood. Imaging and histological observations on human brains indicate that clinical depressive disorders are associated with specific functional and cellular changes in the OMPFC, including activity and volume changes, and specific changes in the number of glial cells.

2,522 citations

Journal ArticleDOI
10 Apr 2014-Nature
TL;DR: A brain-wide, cellular-level, mesoscale connectome for the mouse, using enhanced green fluorescent protein-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain.
Abstract: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

2,051 citations

Journal ArticleDOI
TL;DR: In the ventral part of the midbrain, essentially separate groups of aminergic and non-aminergic neurons in both the reticular formation (VTA) and in the adjacent nuclei of the raphe project bilaterally to a variety of similar terminal fields in the telencephalon, diencephal on, and brainstem.

1,693 citations