scispace - formally typeset
Search or ask a question
Author

J.E. Odegard

Bio: J.E. Odegard is an academic researcher from Rice University. The author has contributed to research in topics: Wavelet & Wavelet transform. The author has an hindex of 17, co-authored 38 publications receiving 3671 citations.

Papers
More filters
Book
14 Aug 1997
TL;DR: This work describes the development of the Basic Multiresolution Wavelet System and some of its components, as well as some of the techniques used to design and implement these systems.
Abstract: 1 Introduction to Wavelets 2 A Multiresolution Formulation of Wavelet Systems 3 Filter Banks and the Discrete Wavelet Transform 4 Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Tight Frames, and Unconditional Bases 5 The Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coefficients 6 Regularity, Moments, and Wavelet System Design 7 Generalizations of the Basic Multiresolution Wavelet System 8 Filter Banks and Transmultiplexers 9 Calculation of the Discrete Wavelet Transform 10 Wavelet-Based Signal Processing and Applications 11 Summary Overview 12 References Bibliography Appendix A Derivations for Chapter 5 on Scaling Functions Appendix B Derivations for Section on Properties Appendix C Matlab Programs Index

2,339 citations

Journal ArticleDOI
M. Lang1, H. Guo, J.E. Odegard, C.S. Burrus, Raymond O. Wells 
TL;DR: A new nonlinear noise reduction method is presented that uses the discrete wavelet transform instead of the usual orthogonal one, resulting in a significantly improved noise reduction compared to the original wavelet based approach.
Abstract: A new nonlinear noise reduction method is presented that uses the discrete wavelet transform. Similar to Donoho (1995) and Donohoe and Johnstone (1994, 1995), the authors employ thresholding in the wavelet transform domain but, following a suggestion by Coifman, they use an undecimated, shift-invariant, nonorthogonal wavelet transform instead of the usual orthogonal one. This new approach can be interpreted as a repeated application of the original Donoho and Johnstone method for different shifts. The main feature of the new algorithm is a significantly improved noise reduction compared to the original wavelet based approach. This holds for a large class of signals, both visually and in the l/sub 2/ sense, and is shown theoretically as well as by experimental results.

516 citations

Proceedings ArticleDOI
Haitao Guo1, J.E. Odegard1, M. Lang1, Ramesh A. Gopinath1, Ivan Selesnick1, C.S. Burrus1 
13 Nov 1994
TL;DR: Wavelet processed imagery is shown to provide better detection performance for the synthetic-aperture radar (SAR) based automatic target detection/recognition (ATD/R) problem and several approaches are proposed to combine the data from different polarizations to achieve even better performance.
Abstract: The paper introduces a novel speckle reduction method based on thresholding the wavelet coefficients of the logarithmically transformed image. The method is computational efficient and can significantly reduce the speckle while preserving the resolution of the original image. Both soft and hard thresholding schemes are studied and the results are compared. When fully polarimetric SAR images are available, the authors propose several approaches to combine the data from different polarizations to achieve even better performance. Wavelet processed imagery is shown to provide better detection performance for the synthetic-aperture radar (SAR) based automatic target detection/recognition (ATD/R) problem. >

215 citations

Proceedings ArticleDOI
M. Lang1, Haitao Guo1, J.E. Odegard1, C. Sidney Burrus1, Raymond O. Wells1 
06 Apr 1995
TL;DR: A novel approach for noise reduction that employs thresholding in some wavelet transform domain but use a nondecimated and consequently redundant wavelet Transform instead of the usual orthogonal one, showing dramatically improved noise reduction for a large class of signals.
Abstract: A novel approach for noise reduction is presented. Similar to Donoho, we employ thresholding in somewavelet transform domain but use a nondecimated and consequently redundant wavelet transform instead of theusual orthogonal one. Another difference is the shift invariance as opposed to the traditional orthogonal wavelettransform. We show that this new approach can be interpreted as a repeated application of Donoho's original method. The main feature is, however, a dramatically improved noise reduction compared to Donoho's approach,both in terms of the 12 error and visually, for a large class of signals. This is shown by theoretical and experimental results, including synthetic aperture radar (SAR) images.Keywords: noise reduction, shift invariance, redundancy, wavelet transform, SAR 1 INTRODUCTION Recently a novel approach for noise reduction due to Donoho and Johnstone'2"3 has been established. It employs thresholding in the wavelet domain and can be shown to be asymptotically near optimal for a wide class

112 citations

Journal ArticleDOI
TL;DR: It is shown that band limited signals are essentially scale limited, and the wavelet sampling theorem, which states that the scaling function expansion coefficients of a function with respect to an M-band wavelet basis, at a certain scale, completely specify a band limited signal, is given.
Abstract: The wavelet representation using orthonormal wavelet bases has received widespread attention. Recently M-band orthonormal wavelet bases have been constructed and compactly supported M-band wavelets have been parameterized. This paper gives the theory and algorithms for obtaining the optimal wavelet multiresolution analysis for the representation of a given signal at a predetermined scale in a variety of error norms. Moreover, for classes of signals, this paper gives the theory and algorithms for designing the robust wavelet multiresolution analysis that minimizes the worst case approximation error among all signals in the class. All results are derived for the general M-band multiresolution analysis. An efficient numerical scheme is also described for the design of the optimal wavelet multiresolution analysis when the least-squared error criterion is used. Wavelet theory introduces the concept of scale which is analogous to the concept of frequency in Fourier analysis. This paper introduces essentially scale limited signals and shows that band limited signals are essentially scale limited, and gives the wavelet sampling theorem, which states that the scaling function expansion coefficients of a function with respect to an M-band wavelet basis, at a certain scale (and above) completely specify a band limited signal (i.e., behave like Nyquist (or higher) rate samples). >

97 citations


Cited by
More filters
Book
01 Feb 2006
TL;DR: Wavelet analysis of finite energy signals and random variables and stochastic processes, analysis and synthesis of long memory processes, and the wavelet variance.
Abstract: 1. Introduction to wavelets 2. Review of Fourier theory and filters 3. Orthonormal transforms of time series 4. The discrete wavelet transform 5. The maximal overlap discrete wavelet transform 6. The discrete wavelet packet transform 7. Random variables and stochastic processes 8. The wavelet variance 9. Analysis and synthesis of long memory processes 10. Wavelet-based signal estimation 11. Wavelet analysis of finite energy signals Appendix. Answers to embedded exercises References Author index Subject index.

2,734 citations

Journal ArticleDOI
TL;DR: Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual- tree approach.
Abstract: The paper discusses the theory behind the dual-tree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing The authors use the complex number symbol C in CWT to avoid confusion with the often-used acronym CWT for the (different) continuous wavelet transform The four fundamentals, intertwined shortcomings of wavelet transform and some solutions are also discussed Several methods for filter design are described for dual-tree CWT that demonstrates with relatively short filters, an effective invertible approximately analytic wavelet transform can indeed be implemented using the dual-tree approach

2,407 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to introduce a few key notions and applications connected to sparsity, targeting newcomers interested in either the mathematical aspects of this area or its applications.
Abstract: A full-rank matrix ${\bf A}\in \mathbb{R}^{n\times m}$ with $n

2,372 citations

Book
14 Aug 1997
TL;DR: This work describes the development of the Basic Multiresolution Wavelet System and some of its components, as well as some of the techniques used to design and implement these systems.
Abstract: 1 Introduction to Wavelets 2 A Multiresolution Formulation of Wavelet Systems 3 Filter Banks and the Discrete Wavelet Transform 4 Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Tight Frames, and Unconditional Bases 5 The Scaling Function and Scaling Coefficients, Wavelet and Wavelet Coefficients 6 Regularity, Moments, and Wavelet System Design 7 Generalizations of the Basic Multiresolution Wavelet System 8 Filter Banks and Transmultiplexers 9 Calculation of the Discrete Wavelet Transform 10 Wavelet-Based Signal Processing and Applications 11 Summary Overview 12 References Bibliography Appendix A Derivations for Chapter 5 on Scaling Functions Appendix B Derivations for Section on Properties Appendix C Matlab Programs Index

2,339 citations

Book
01 Jan 1996
TL;DR: The author explains the development of the Huffman Coding Algorithm and some of the techniques used in its implementation, as well as some of its applications, including Image Compression, which is based on the JBIG standard.
Abstract: Preface 1 Introduction 1.1 Compression Techniques 1.1.1 Lossless Compression 1.1.2 Lossy Compression 1.1.3 Measures of Performance 1.2 Modeling and Coding 1.3 Organization of This Book 1.4 Summary 1.5 Projects and Problems 2 Mathematical Preliminaries 2.1 Overview 2.2 A Brief Introduction to Information Theory 2.3 Models 2.3.1 Physical Models 2.3.2 Probability Models 2.3.3. Markov Models 2.3.4 Summary 2.5 Projects and Problems 3 Huffman Coding 3.1 Overview 3.2 "Good" Codes 3.3. The Huffman Coding Algorithm 3.3.1 Minimum Variance Huffman Codes 3.3.2 Length of Huffman Codes 3.3.3 Extended Huffman Codes 3.4 Nonbinary Huffman Codes 3.5 Adaptive Huffman Coding 3.5.1 Update Procedure 3.5.2 Encoding Procedure 3.5.3 Decoding Procedure 3.6 Applications of Huffman Coding 3.6.1 Lossless Image Compression 3.6.2 Text Compression 3.6.3 Audio Compression 3.7 Summary 3.8 Projects and Problems 4 Arithmetic Coding 4.1 Overview 4.2 Introduction 4.3 Coding a Sequence 4.3.1 Generating a Tag 4.3.2 Deciphering the Tag 4.4 Generating a Binary Code 4.4.1 Uniqueness and Efficiency of the Arithmetic Code 4.4.2 Algorithm Implementation 4.4.3 Integer Implementation 4.5 Comparison of Huffman and Arithmetic Coding 4.6 Applications 4.6.1 Bi-Level Image Compression-The JBIG Standard 4.6.2 Image Compression 4.7 Summary 4.8 Projects and Problems 5 Dictionary Techniques 5.1 Overview 5.2 Introduction 5.3 Static Dictionary 5.3.1 Diagram Coding 5.4 Adaptive Dictionary 5.4.1 The LZ77 Approach 5.4.2 The LZ78 Approach 5.5 Applications 5.5.1 File Compression-UNIX COMPRESS 5.5.2 Image Compression-the Graphics Interchange Format (GIF) 5.5.3 Compression over Modems-V.42 bis 5.6 Summary 5.7 Projects and Problems 6 Lossless Image Compression 6.1 Overview 6.2 Introduction 6.3 Facsimile Encoding 6.3.1 Run-Length Coding 6.3.2 CCITT Group 3 and 4-Recommendations T.4 and T.6 6.3.3 Comparison of MH, MR, MMR, and JBIG 6.4 Progressive Image Transmission 6.5 Other Image Compression Approaches 6.5.1 Linear Prediction Models 6.5.2 Context Models 6.5.3 Multiresolution Models 6.5.4 Modeling Prediction Errors 6.6 Summary 6.7 Projects and Problems 7 Mathematical Preliminaries 7.1 Overview 7.2 Introduction 7.3 Distortion Criteria 7.3.1 The Human Visual System 7.3.2 Auditory Perception 7.4 Information Theory Revisted 7.4.1 Conditional Entropy 7.4.2 Average Mutual Information 7.4.3 Differential Entropy 7.5 Rate Distortion Theory 7.6 Models 7.6.1 Probability Models 7.6.2 Linear System Models 7.6.3 Physical Models 7.7 Summary 7.8 Projects and Problems 8 Scalar Quantization 8.1 Overview 8.2 Introduction 8.3 The Quantization Problem 8.4 Uniform Quantizer 8.5 Adaptive Quantization 8.5.1 Forward Adaptive Quantization 8.5.2 Backward Adaptive Quantization 8.6 Nonuniform Quantization 8.6.1 pdf-Optimized Quantization 8.6.2 Companded Quantization 8.7 Entropy-Coded Quantization 8.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs 8.7.2 Entropy-Constrained Quantization 8.7.3 High-Rate Optimum Quantization 8.8 Summary 8.9 Projects and Problems 9 Vector Quantization 9.1 Overview 9.2 Introduction 9.3 Advantages of Vector Quantization over Scalar Quantization 9.4 The Linde-Buzo-Gray Algorithm 9.4.1 Initializing the LBG Algorithm 9.4.2 The Empty Cell Problem 9.4.3 Use of LBG for Image Compression 9.5 Tree-Structured Vector Quantizers 9.5.1 Design of Tree-Structured Vector Quantizers 9.6 Structured Vector Quantizers 9.6.1 Pyramid Vector Quantization 9.6.2 Polar and Spherical Vector Quantizers 9.6.3 Lattice Vector Quantizers 9.7 Variations on the Theme 9.7.1 Gain-Shape Vector Quantization 9.7.2 Mean-Removed Vector Quantization 9.7.3 Classified Vector Quantization 9.7.4 Multistage Vector Quantization 9.7.5 Adaptive Vector Quantization 9.8 Summary 9.9 Projects and Problems 10 Differential Encoding 10.1 Overview 10.2 Introduction 10.3 The Basic Algorithm 10.4 Prediction in DPCM 10.5 Adaptive DPCM (ADPCM) 10.5.1 Adaptive Quantization in DPCM 10.5.2 Adaptive Prediction in DPCM 10.6 Delta Modulation 10.6.1 Constant Factor Adaptive Delta Modulation (CFDM) 10.6.2 Continuously Variable Slope Delta Modulation 10.7 Speech Coding 10.7.1 G.726 10.8 Summary 10.9 Projects and Problems 11 Subband Coding 11.1 Overview 11.2 Introduction 11.3 The Frequency Domain and Filtering 11.3.1 Filters 11.4 The Basic Subband Coding Algorithm 11.4.1 Bit Allocation 11.5 Application to Speech Coding-G.722 11.6 Application to Audio Coding-MPEG Audio 11.7 Application to Image Compression 11.7.1 Decomposing an Image 11.7.2 Coding the Subbands 11.8 Wavelets 11.8.1 Families of Wavelets 11.8.2 Wavelets and Image Compression 11.9 Summary 11.10 Projects and Problems 12 Transform Coding 12.1 Overview 12.2 Introduction 12.3 The Transform 12.4 Transforms of Interest 12.4.1 Karhunen-Loeve Transform 12.4.2 Discrete Cosine Transform 12.4.3 Discrete Sine Transform 12.4.4 Discrete Walsh-Hadamard Transform 12.5 Quantization and Coding of Transform Coefficients 12.6 Application to Image Compression-JPEG 12.6.1 The Transform 12.6.2 Quantization 12.6.3 Coding 12.7 Application to Audio Compression 12.8 Summary 12.9 Projects and Problems 13 Analysis/Synthesis Schemes 13.1 Overview 13.2 Introduction 13.3 Speech Compression 13.3.1 The Channel Vocoder 13.3.2 The Linear Predictive Coder (Gov.Std.LPC-10) 13.3.3 Code Excited Linear Prediction (CELP) 13.3.4 Sinusoidal Coders 13.4 Image Compression 13.4.1 Fractal Compression 13.5 Summary 13.6 Projects and Problems 14 Video Compression 14.1 Overview 14.2 Introduction 14.3 Motion Compensation 14.4 Video Signal Representation 14.5 Algorithms for Videoconferencing and Videophones 14.5.1 ITU_T Recommendation H.261 14.5.2 Model-Based Coding 14.6 Asymmetric Applications 14.6.1 The MPEG Video Standard 14.7 Packet Video 14.7.1 ATM Networks 14.7.2 Compression Issues in ATM Networks 14.7.3 Compression Algorithms for Packet Video 14.8 Summary 14.9 Projects and Problems A Probability and Random Processes A.1 Probability A.2 Random Variables A.3 Distribution Functions A.4 Expectation A.5 Types of Distribution A.6 Stochastic Process A.7 Projects and Problems B A Brief Review of Matrix Concepts B.1 A Matrix B.2 Matrix Operations C Codes for Facsimile Encoding D The Root Lattices Bibliography Index

2,311 citations