scispace - formally typeset
Search or ask a question
Author

J. E. Pugh

Bio: J. E. Pugh is an academic researcher from National Institute for Medical Research. The author has contributed to research in topics: DNA & Gene. The author has an hindex of 2, co-authored 3 publications receiving 1936 citations.

Papers
More filters
Journal ArticleDOI
24 Jan 1975-Science
TL;DR: This article suggests mechanisms that may account for the differentiated state of dividing or nondividing cells and that also attempt to explain the ordered switching on or off of genes during development.
Abstract: It is generally accepted that the differentiated state of a given type of cell is associated with the activity of a particular set of genes, together with the total inactivity of those sets associated with the differentiation of other cell types. It is also clear that the differentiated state of dividing or nondividing cells is often extremely stable. In this article we suggest mechanisms that may account for this stability and that also attempt to explain the ordered switching on or off of genes during development. The phenotype of the organism depends on the genotype, and the genetic contribution from both parents is in almost all cases equal. Since the ultimate control of development resides in the genetic material, the actual program must be written in base sequences in the DNA. It is also clear that cytoplasmic components can have a powerful or overriding influence on genomic activity in particular cells, yet these cytoplasmic components are, of course, usually derived from the activity of genes at some earlier stage in development. A continual interaction between cytoplasmic enzymes and DNA sequences is an essential part of the model to be presented. Modification Enzymes In bacteria, enzymes exist which modify DNA by methylating adenine in the 6-position ( 1 ). These enzymes are extremely specific in their action; they modify bases at particular positions in short defined sequences of DNA, which, at least in some instances, form a palindrome. (A palindrome in DNA is an inverted duplication, with twofold rotational symmetry. The 3′ →...

1,708 citations

Journal ArticleDOI
TL;DR: In this paper, the authors suggest mechanisms that may explain the stability of dividing or non-dividing cells and also attempt to explain the ordered switching on or off of genes during development.
Abstract: It is generally accepted that the differentiated state of a given type of cell is associated with the activity of a particular set of genes, together with the total inactivity of those sets associated with the differentiation of other cell types. It is also clear that the differentiated state of dividing or nondividing cells is often extremely stable. In this article we suggest mechanisms that may account for this stability and that also attempt to explain the ordered switching on or off of genes during development. The phenotype of the organism depends on the genotype, and the genetic contribution from both parents is in almost all cases equal. Since the ultimate control of development resides in the genetic material, the actual program must be written in base sequences in the DNA. It is also clear that cytoplasmic components can have a powerful or overriding influence on genomic activity in particular cells, yet these cytoplasmic components are, of course, usually derived from the activity of genes at some earlier stage in development. A continual interaction between cytoplasmic enzymes and DNA sequences is an essential part of the model to be presented. Modification Enzymes In bacteria, enzymes exist which modify DNA by methylating adenine in the 6-position ( 1 ). These enzymes are extremely specific in their action; they modify bases at particular positions in short defined sequences of DNA, which, at least in some instances, form a palindrome. (A palindrome in DNA is an inverted duplication, with twofold rotational symmetry. The 3′ →...

348 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Abstract: The character of a cell is defined by its constituent proteins, which are the result of specific patterns of gene expression. Crucial determinants of gene expression patterns are DNA-binding transcription factors that choose genes for transcriptional activation or repression by recognizing the sequence of DNA bases in their promoter regions. Interaction of these factors with their cognate sequences triggers a chain of events, often involving changes in the structure of chromatin, that leads to the assembly of an active transcription complex (e.g., Cosma et al. 1999). But the types of transcription factors present in a cell are not alone sufficient to define its spectrum of gene activity, as the transcriptional potential of a genome can become restricted in a stable manner during development. The constraints imposed by developmental history probably account for the very low efficiency of cloning animals from the nuclei of differentiated cells (Rideout et al. 2001; Wakayama and Yanagimachi 2001). A “transcription factors only” model would predict that the gene expression pattern of a differentiated nucleus would be completely reversible upon exposure to a new spectrum of factors. Although many aspects of expression can be reprogrammed in this way (Gurdon 1999), some marks of differentiation are evidently so stable that immersion in an alien cytoplasm cannot erase the memory. The genomic sequence of a differentiated cell is thought to be identical in most cases to that of the zygote from which it is descended (mammalian B and T cells being an obvious exception). This means that the marks of developmental history are unlikely to be caused by widespread somatic mutation. Processes less irrevocable than mutation fall under the umbrella term “epigenetic” mechanisms. A current definition of epigenetics is: “The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence” (Russo et al. 1996). There are two epigenetic systems that affect animal development and fulfill the criterion of heritability: DNA methylation and the Polycomb-trithorax group (Pc-G/trx) protein complexes. (Histone modification has some attributes of an epigenetic process, but the issue of heritability has yet to be resolved.) This review concerns DNA methylation, focusing on the generation, inheritance, and biological significance of genomic methylation patterns in the development of mammals. Data will be discussed favoring the notion that DNA methylation may only affect genes that are already silenced by other mechanisms in the embryo. Embryonic transcription, on the other hand, may cause the exclusion of the DNA methylation machinery. The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development. Indeed, the possibility will be discussed that DNA methylation and Pc-G/trx may represent alternative systems of epigenetic memory that have been interchanged over evolutionary time. Animal DNA methylation has been the subject of several recent reviews (Bird and Wolffe 1999; Bestor 2000; Hsieh 2000; Costello and Plass 2001; Jones and Takai 2001). For recent reviews of plant and fungal DNA methylation, see Finnegan et al. (2000), Martienssen and Colot (2001), and Matzke et al. (2001).

6,691 citations

Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations

Journal ArticleDOI
29 Oct 1999-Cell
TL;DR: It is demonstrated that two recently identified DNA methyltransferases, DnMT3a and Dnmt3b, are essential for de novo methylation and for mouse development and play important roles in normal development and disease.

5,708 citations

Journal ArticleDOI
TL;DR: Improved genome-scale mapping of methylation allows us to evaluate DNA methylation in different genomic contexts: transcriptional start sites with or without CpG islands, in gene bodies, at regulatory elements and at repeat sequences.
Abstract: DNA methylation is frequently described as a 'silencing' epigenetic mark, and indeed this function of 5-methylcytosine was originally proposed in the 1970s. Now, thanks to improved genome-scale mapping of methylation, we can evaluate DNA methylation in different genomic contexts: transcriptional start sites with or without CpG islands, in gene bodies, at regulatory elements and at repeat sequences. The emerging picture is that the function of DNA methylation seems to vary with context, and the relationship between DNA methylation and transcription is more nuanced than we realized at first. Improving our understanding of the functions of DNA methylation is necessary for interpreting changes in this mark that are observed in diseases such as cancer.

4,799 citations