scispace - formally typeset
Search or ask a question
Author

J. E. Silva

Bio: J. E. Silva is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Thermogenesis & Adrenergic. The author has an hindex of 1, co-authored 1 publications receiving 366 citations.

Papers
More filters
Journal ArticleDOI
20 Oct 1983-Nature
TL;DR: It is reported here that both noradrenaline and cold exposure increase BAT 5′D-II through α1-adrenergic receptors, whereas depletion of catecholamines with α-methyl-p-tyrosine (MPT) prevents the effect of cold but not that of nor adrenaline.
Abstract: There are several mechanisms by which homeothermic animals increase heat production, including shivering, sympathetic nervous system activation and stimulation of thyroid hormone secretion. Studies in rats have shown that increased sympathetic activity causes increased heat production in brown adipose tissue (BAT) after cold exposure or food ingestion1–3. Acute cold exposure also increases circulating thyroid hormones4 which in turn stimulate cellular metabolism through induction5 of various enzymes. Most metabolic effects of thyroxine (T4) are thought to be due to the triiodothyronine (T3) which is produced from T4 by a process of 5′ monodeiodination. There are two enzymes responsible for this reaction6–8: type I, or propylthiouracil (PTU)-sensitive iodothyronine deiodinase (5′D-I), which is reduced in hypothyroidism, stimulated in hyperthyroidism and probably provides most of the circulating T3 in the adult rat9. Type II 5′-deiodinase (5′D-II) is characteristic of brain and pituitary, is increased by thyroidectomy, is not inhibited by PTU and provides 50–80% of the intraceUular T3 in these two tissues. Recently, 5′D-II activity was identified in interscapular BAT10. As the sympathetic nervous system influences the metabolic activation of BAT, we have studied the effects of noradrenaline and acute cold exposure on BAT 5′D-II. We report here that both noradrenaline and cold exposure increase BAT 5′D-II through α1-adrenergic receptors, whereas depletion of catecholamines with α-methyl-p-tyrosine (MPT) prevents the effect of cold but not that of noradrenaline. These results suggest that the sympathetic nervous system may increase T3 production in rats by stimulating BAT 5′D-II. By increasing metabolic rate, this rise in T3 would enhance the thermogenic response to sympathetic stimulation.

375 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
TL;DR: This review presents the major advances in knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.
Abstract: Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.

1,856 citations

Journal ArticleDOI
TL;DR: The goal of this review is to place the exciting advances that have occurred in understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context.
Abstract: The goal of this review is to place the exciting advances that have occurred in our understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context. We review new data regarding the mechanism of selenoprotein synthesis, the molecular and cellular biological properties of the individual deiodinases, including gene structure, mRNA and protein characteristics, tissue distribution, subcellular localization and topology, enzymatic properties, structure-activity relationships, and regulation of synthesis, inactivation, and degradation. These provide the background for a discussion of their role in thyroid physiology in humans and other vertebrates, including evidence that D2 plays a significant role in human plasma T3 production. We discuss the pathological role of D3 overexpression causing “consumptive hypothyroidism” as well as our current understanding of the pathophysiology of iodothyronine deiodination during illness and amiodarone therapy. Finally, we review the new insights from analysis of mice with targeted disruption of the Dio2 gene and overexpression of D2 in the myocardium. (Endocrine Reviews 23: 38–89, 2002)

1,670 citations

Journal ArticleDOI
TL;DR: The mechanisms used by homeothermic species to generate more heat and their regulation largely by thyroid hormone and the sympathetic nervous system are reviewed, finding that thyroid hormone plays a critical role in modulating the amount of the active TH, T(3), in BAT, thereby modulated the responses to SNS.
Abstract: Increased heat generation from biological processes is inherent to homeothermy. Homeothermic species produce more heat from sustaining a more active metabolism as well as from reducing fuel efficie...

599 citations

Journal ArticleDOI
TL;DR: It is reported that despite a normal plasma 3,5,3'-triiodothyronine (T3) concentration, cold-exposed mice with targeted disruption of the Dio2 gene (Dio2(-/-)) become hypothermic due to impaired BAT thermogenesis and survive by compensatory shivering with consequent acute weight loss.
Abstract: Type 2 iodothyronine deiodinase (D2) is a selenoenzyme, the product of the recently cloned cAMP-dependent Dio2 gene, which increases 10- to 50-fold during cold stress only in brown adipose tissue (BAT). Here we report that despite a normal plasma 3,5,3'-triiodothyronine (T3) concentration, cold-exposed mice with targeted disruption of the Dio2 gene (Dio2(-/-)) become hypothermic due to impaired BAT thermogenesis and survive by compensatory shivering with consequent acute weight loss. This occurs despite normal basal mitochondrial uncoupling protein 1 (UCP1) concentration. In Dio2(-/-) brown adipocytes, the acute norepinephrine-, CL316,243-, or forskolin-induced increases in lipolysis, UCP1 mRNA, and O(2) consumption are all reduced due to impaired cAMP generation. These hypothyroid-like abnormalities are completely reversed by a single injection of T3 14 hours earlier. Recent studies suggest that UCP1 is primarily dependent on thyroid hormone receptor beta (TR beta) while the normal sympathetic response of brown adipocytes requires TR alpha. Intracellularly generated T3 may be required to saturate the TR alpha, which has an approximately fourfold lower T3-binding affinity than does TR beta. Thus, D2 is an essential component in the thyroid-sympathetic synergism required for thermal homeostasis in small mammals.

467 citations