scispace - formally typeset
Search or ask a question
Author

J. Echauz

Bio: J. Echauz is an academic researcher from University of Puerto Rico at Mayagüez. The author has contributed to research in topics: Epilepsy surgery & Epilepsy. The author has an hindex of 13, co-authored 27 publications receiving 2523 citations. Previous affiliations of J. Echauz include Georgia Institute of Technology & Georgia Tech Research Institute.

Papers
More filters
Journal ArticleDOI
01 Apr 2001-Neuron
TL;DR: It is suggested that epileptic seizures may begin as a cascade of electrophysiological events that evolve over hours and that quantitative measures of preseizure electrical activity could possibly be used to predict seizures far in advance of clinical onset.

600 citations

Journal ArticleDOI
TL;DR: This study demonstrates that a careful selection of fractal dimension algorithm is required for specific applications, and the most common methods of estimating the fractaldimension of biomedical signals directly in the time domain are analyzed and compared.
Abstract: The fractal dimension of a waveform represents a powerful tool for transient detection. In particular, in analysis of electroencephalograms and electrocardiograms, this feature has been used to identify and distinguish specific states of physiologic function. A variety of algorithms are available for the computation of fractal dimension. In this study, the most common methods of estimating the fractal dimension of biomedical signals directly in the time domain (considering the time series as a geometric object) are analyzed and compared. The analysis is performed over both synthetic data and intracranial electroencephalogram data recorded during presurgical evaluation of individuals with epileptic seizures. The advantages and drawbacks of each technique are highlighted. The effects of window size, number of overlapping points, and signal-to-noise ratio are evaluated for each method. This study demonstrates that a careful selection of fractal dimension algorithm is required for specific applications.

444 citations

Journal ArticleDOI
TL;DR: Advances in seizure prediction promise to give rise to implantable devices able to warn of impending seizures and to trigger therapy to prevent clinical epileptic attacks, and whether closed-loop seizure-prediction and treatment devices will have the profound clinical effect of their cardiological predecessors will depend on ability to perfect these techniques.
Abstract: Summary For almost 40 years, neuroscientists thought that epileptic seizures began abruptly, just a few seconds before clinical attacks. There is now mounting evidence that seizures develop minutes to hours before clinical onset. This change in thinking is based on quantitative studies of long digital intracranial electroencephalographic (EEG) recordings from patients being evaluated for epilepsy surgery. Evidence that seizures can be predicted is spread over diverse sources in medical, engineering, and patent publications. Techniques used to forecast seizures include frequency-based methods, statistical analysis of EEG signals, non-linear dynamics (chaos), and intelligent engineered systems. Advances in seizure prediction promise to give rise to implantable devices able to warn of impending seizures and to trigger therapy to prevent clinical epileptic attacks. Treatments such as electrical stimulation or focal drug infusion could be given on demand and might eliminate side-effects in some patients taking antiepileptic drugs long term. Whether closed-loop seizure-prediction and treatment devices will have the profound clinical effect of their cardiological predecessors will depend on our ability to perfect these techniques. Their clinical efficacy must be validated in large-scale, prospective, controlled trials.

399 citations

Journal ArticleDOI
TL;DR: An individualized method for selecting electroencephalogram features and electrode locations for seizure prediction focused on precursors that occur within ten minutes of electrographic seizure onset, as an example of a method for training, testing and validating a seizure prediction system on data from individual patients.
Abstract: Epileptic seizure prediction has steadily evolved from its conception in the 1970s, to proof-of-principle experiments in the late 1980s and 1990s, to its current place as an area of vigorous, clinical and laboratory investigation. As a step toward practical implementation of this technology in humans, we present an individualized method for selecting electroencephalogram (EEG) features and electrode locations for seizure prediction focused on precursors that occur within ten minutes of electrographic seizure onset. This method applies an intelligent genetic search process to EEG signals simultaneously collected from multiple intracranial electrode contacts and multiple quantitative features derived from these signals. The algorithm is trained on a series of baseline and preseizure records and then validated on other, previously unseen data using split sample validation techniques. The performance of this method is demonstrated on multiday recordings obtained from four patients implanted with intracranial electrodes during evaluation for epilepsy surgery. An average probability of prediction (or block sensitivity) of 62.5% was achieved in this group, with an average block false positive (FP) rate of 0.2775 FP predictions/h, corresponding to 90.47% specificity. These findings are presented as an example of a method for training, testing and validating a seizure prediction system on data from individual patients. Given the heterogeneity of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treating epilepsy to each individual's neurophysiology prior to clinical deployment.

306 citations

Proceedings ArticleDOI
25 Oct 2001
TL;DR: A signal feature with low computational burden is presented as an efficient tool for seizure onset detection by evaluating 1,215 hours of intracranial EEG signal from 10 patients.
Abstract: A signal feature with low computational burden is presented as an efficient tool for seizure onset detection. The feature was evaluated over a total of. 1,215 hours of intracranial EEG signal from 10 patients. Results confirmed this feature as being useful for seizure onset detection yielding an average delay of 4.1 seconds, 0.051 false positives per hour, and one false negative on a subclinical seizure out of 111 seizures analyzed of which 23 were subclinical.

252 citations


Cited by
More filters
Journal ArticleDOI
03 Sep 2009-Nature
TL;DR: Work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.
Abstract: Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.

3,450 citations

Journal ArticleDOI
TL;DR: Interpretation of results in terms of 'functional sources' and 'functional networks' allows the identification of three basic patterns of brain dynamics: normal, ongoing dynamics during a no-task, resting state in healthy subjects, and hypersynchronous, highly nonlinear dynamics of epileptic seizures and degenerative encephalopathies.

1,226 citations

Journal ArticleDOI
01 Feb 2007-Brain
TL;DR: A critically discuss the literature on seizure prediction and address some of the problems and pitfalls involved in the designing and testing of seizure-prediction algorithms, and point towards possible future developments and propose methodological guidelines for future studies on seizure predictions.
Abstract: The sudden and apparently unpredictable nature of seizures is one of the most disabling aspects of the disease epilepsy. A method capable of predicting the occurrence of seizures from the electroencephalogram (EEG) of epilepsy patients would open new therapeutic possibilities. Since the 1970s investigations on the predictability of seizures have advanced from preliminary descriptions of seizure precursors to controlled studies applying prediction algorithms to continuous multi-day EEG recordings. While most of the studies published in the 1990s and around the turn of the millennium yielded rather promising results, more recent evaluations could not reproduce these optimistic findings, thus raising a debate about the validity and reliability of previous investigations. In this review, we will critically discuss the literature on seizure prediction and address some of the problems and pitfalls involved in the designing and testing of seizure-prediction algorithms. We will give an account of the current state of this research field, point towards possible future developments and propose methodological guidelines for future studies on seizure prediction.

1,018 citations

Journal ArticleDOI
TL;DR: In this work, a versatile signal processing and analysis framework for Electroencephalogram (EEG) was proposed and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients.
Abstract: In this work, we proposed a versatile signal processing and analysis framework for Electroencephalogram (EEG). Within this framework the signals were decomposed into the frequency sub-bands using DWT and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients. Principal components analysis (PCA), independent components analysis (ICA) and linear discriminant analysis (LDA) is used to reduce the dimension of data. Then these features were used as an input to a support vector machine (SVM) with two discrete outputs: epileptic seizure or not. The performance of classification process due to different methods is presented and compared to show the excellent of classification process. These findings are presented as an example of a method for training, and testing a seizure prediction method on data from individual petit mal epileptic patients. Given the heterogeneity of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treating epilepsy to each individual's neurophysiology prior to clinical operation.

1,010 citations

Journal ArticleDOI
TL;DR: The aim of this review is to explain and to categorize the various algorithms into groups and their application in the field of medical signal analysis.

839 citations