scispace - formally typeset
Search or ask a question
Author

J. Encarnacao

Other affiliations: University of Texas at Austin
Bio: J. Encarnacao is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Swarm behaviour & Gravitational field. The author has an hindex of 9, co-authored 23 publications receiving 473 citations. Previous affiliations of J. Encarnacao include University of Texas at Austin.

Papers
More filters
Journal ArticleDOI
TL;DR: The Swarm SCARF (Satellite Constellation Application and Research Facility) as mentioned in this paper is a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013.
Abstract: Swarm, a three-satellite constellation to study the dynamics of the Earth’s magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth’s interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF (Satellite Constellation Application and Research Facility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.

221 citations

Journal ArticleDOI
TL;DR: First PSO results from more than one year of Swarm GPS data indicate that the consistency between the reduced-dynamic and kinematic Swarm PSO for most parts of the Earth is at the 4–5 cm level.

122 citations

Journal ArticleDOI
TL;DR: In this article, the acceleration measurements of the Swarm satellites are manually removed using a dedicated software tool, and then the calibrated and corrected accelerations are merged with the non-gravitational accelerations derived from the observations of the GPS receiver by a weighted average in the spectral domain, where the weights depend on the frequency.
Abstract: The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. In this paper, we describe the new, improved four-stage processing that is applied for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The identification of validity periods for calibration and correction parameters is part of the second stage. In the third stage, the calibrated and corrected accelerations are merged with the non-gravitational accelerations derived from the observations of the GPS receiver by a weighted average in the spectral domain, where the weights depend on the frequency. The fourth stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We present the first results of the processing of Swarm C acceleration measurements from June 2014 to May 2015. We started with Swarm C because its acceleration measurements contain much less disturbances than those of Swarm A and have a higher signal-to-noise ratio than those of Swarm B. The latter is caused by the higher altitude of Swarm B as well as larger noise in the acceleration measurements of Swarm B. We show the results of each processing stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set.

60 citations

Journal ArticleDOI
TL;DR: In this article, a spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE.
Abstract: Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and (ii) to assist designing GRACE follow-on missions. The analyzed noise realizations are produced as the difference between the actual GRACE inter-satellite range measurements and the predictions based on state-of-the-art forcemodels. The exploited functional model is based on the so-called “range combinations,” which can be understood as a finite-difference analog of inter-satellite accelerations projected onto the line-of-sight connecting the satellites. It is shown that low-frequency noise is caused by limited accuracy of the computed GRACE orbits. In the first instance, it leads to an inaccurate estimation of the radial component of the inter-satellite velocities. A large impact of this component stems from the fact that it is directly related to centrifugal accelerations, which have to be taken into account when the measured range-accelerations are linked with inter-satellite accelerations. Another effect of orbit inaccuracies is a miscalculation of forces acting on the satellites (particularly, the one described by the zero-degree term of the Earth’s gravitational field). The major contributors to the noise budget at high frequencies (above 9 mHz) are (i) ranging sensor errors and (ii) limited knowledge of the Earth’s static gravity field at high degrees. Importantly, we show that updating the model of the static field on the basis of the available data must be performed with a caution as the result may not be physical due to a non-unique recovery of high-degree coefficients. The source of noise in the range of intermediate frequencies (1–9 mHz), which is particularly critical for an accurate gravity field recovery, is not fully understood yet. We show, however, that it cannot be explained by inaccuracies in background models of time-varying gravity field. It is stressed that most of the obtained results can be treated as sufficiently general (i.e., applicable in the context of a statistically optimal estimation based on any functional model).

48 citations

Journal ArticleDOI
TL;DR: The three-satellite ESA Swarm mission aims at mapping the Earth's global geomagnetic field at unprecedented spatial and temporal resolution and precision as discussed by the authors, and also aims at observing temperature and possibly horizontal winds.
Abstract: The three-satellite ESA Swarm mission aims at mapping the Earth’s global geomagnetic field at unprecedented spatial and temporal resolution and precision. Swarm also aims at observing thermospheric density and possibly horizontal winds. Precise orbit determination (POD) and Thermospheric Density and Wind (TDW) chains form part of the Swarm Constellation and Application Facility (SCARF), which will provide the so-called Level 2 products. The POD and TDW chains generate the orbit, accelerometer calibration, and thermospheric density and wind Level 2 products. The POD and TDW chains have been tested with data from the CHAMP and GRACE missions, indicating that a 3D orbit precision of about 10 cm can be reached. In addition, POD allows to determine daily accelerometer bias and scale factor values with a precision of around 10–15 nm/s2 and 0.01–0.02, respectively, for the flight direction. With these accelerometer calibration parameter values, derived thermospheric density is consistent at the 9–11% level (standard deviation) with values predicted by models (taking into account that model values are 20–30% higher). The retrieval of crosswinds forms part of the processing chain, but will be challenging. The Swarm observations will be used for further developing and improving density and wind retrieval algorithms.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the ionospheric response to the geomagnetic storm of 17-18 March 2015 (the St. Patrick's Day storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of A233 nT).
Abstract: We present the first multi-instrumental results on the ionospheric response to the geomagnetic storm of 17–18 March 2015 (the St. Patrick's Day storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of A233 nT). The storm caused complex effects around the globe. The most dramatic positive ionospheric storm occurred at low latitudes in the morning (~100–150% enhancement) and postsunset (~80–100% enhancement) sectors. These significant vertical total electron content increases were observed in different local time sectors and at different universal time, but around the same area of the Eastern Pacific region, which indicates a regional impact of storm drivers. Our analysis revealed that this particular region was most concerned by the increase in the thermospheric O/N 2 ratio. At midlatitudes, we observe inverse hemispheric asymmetries that occurred, despite the equinoctial period, in different longitudinal regions. In the European-African sector, positive storm signatures were observed in the Northern Hemisphere (NH), whereas in the American sector, a large positive storm occurred in the Southern Hemisphere, while the NH experienced a negative storm. The observed asymmetries can be partly explained by the thermospheric composition changes and partly by the hemispherically different nondipolar portions of the geomagnetic field as well as by the IMF By component variations. At high latitudes, negative ionospheric storm effects were recorded in all longitudinal regions, especially the NH of the Asian sector was concerned. The negative storm phase developed globally on 18 March at the beginning of the recovery phase.

274 citations

Journal ArticleDOI
TL;DR: The Swarm SCARF (Satellite Constellation Application and Research Facility) as mentioned in this paper is a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, is expected to be launched in late 2013.
Abstract: Swarm, a three-satellite constellation to study the dynamics of the Earth’s magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth’s interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF (Satellite Constellation Application and Research Facility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.

221 citations

Journal ArticleDOI
TL;DR: The mass density of Earth's thermosphere (∼90-600 km altitude) is a critical parameter for low Earth orbit prediction because of the atmospheric drag on satellites in this region.

185 citations

Journal ArticleDOI
TL;DR: In this article, an end-to-end numerical simulation study was conducted to optimize the technique for estimating geocenter motion and variations in J2 by combining data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with output from an Ocean Bottom Pressure (OBP) model and a Glacial Isostatic Adjustment (GIA) model.
Abstract: The focus of the study is optimizing the technique for estimating geocenter motion and variations in J2 by combining data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with output from an Ocean Bottom Pressure (OBP) model and a Glacial Isostatic Adjustment (GIA) model [Swenson et al., 2008; Sun et al., 2016]. First, we conduct an end-to-end numerical simulation study. We generate input time-variable gravity field observations by perturbing a synthetic Earth model with realistically simulated errors. We show that it is important to avoid large errors at short wavelengths and signal leakage from land to ocean, as well as to account for self-attraction and loading (SAL) effects. Second, the optimal implementation strategy is applied to real GRACE data. We show that the estimates of annual amplitude in geocenter motion are in line with estimates from other techniques, such as SLR and global GPS inversion. At the same time, annual amplitudes of C10 and C11 are increased by about 50% and 20%, respectively, compared to estimates based on [Swenson et al., 2008]. Estimates of J2 variations are by about 15% larger than SLR results in terms of annual amplitude. Linear trend estimates are dependent on the adopted GIA model, but still comparable to some SLR results.

152 citations

Journal ArticleDOI
TL;DR: A comprehensive magnetic field model named CM5 was derived from CHAMP, Orsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm as mentioned in this paper.
Abstract: A comprehensive magnetic field model named CM5 has been derived from CHAMP, Orsted and SAC-C satellite and observatory hourly-means data from 2000 August to 2013 January using the Swarm Level-2 Comprehensive Inversion (CI) algorithm. Swarm is a recently launched constellation of three satellites to map the Earth's magnetic field. The CI technique includes several interesting features such as the bias mitigation scheme known as Selective Infinite Variance Weighting (SIVW), a new treatment for attitude error in satellite vector measurements, and the inclusion of 3-D conductivity for ionospheric induction. SIVW has allowed for a much improved lithospheric field recovery over CM4 by exploiting CHAMP along-track difference data yielding resolution levels up to spherical harmonic degree 107, and has allowed for the successful extraction of the oceanic M2 tidal magnetic field from quiet, nightside data. The 3-D induction now captures anomalous Solar-quiet features in coastal observatory daily records. CM5 provides a satisfactory, continuous description of the major magnetic fields in the near-Earth region over this time span, and its lithospheric, ionospheric and oceanic M2 tidal constituents may be used as validation tools for future Swarm Level-2 products coming from the CI algorithm and other dedicated product algorithms.

146 citations