scispace - formally typeset
Search or ask a question
Author

J. Erby Wilkinson

Bio: J. Erby Wilkinson is an academic researcher from University of Michigan. The author has contributed to research in topics: Metastasis & PI3K/AKT/mTOR pathway. The author has an hindex of 14, co-authored 18 publications receiving 4961 citations.

Papers
More filters
Journal ArticleDOI
16 Jul 2009-Nature
TL;DR: It is reported that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age.
Abstract: Inhibition of the TOR signalling pathway by genetic or pharmacological intervention extends lifespan in invertebrates, including yeast, nematodes and fruitflies; however, whether inhibition of mTOR signalling can extend lifespan in a mammalian species was unknown. Here we report that rapamycin, an inhibitor of the mTOR pathway, extends median and maximal lifespan of both male and female mice when fed beginning at 600 days of age. On the basis of age at 90% mortality, rapamycin led to an increase of 14% for females and 9% for males. The effect was seen at three independent test sites in genetically heterogeneous mice, chosen to avoid genotype-specific effects on disease susceptibility. Disease patterns of rapamycin-treated mice did not differ from those of control mice. In a separate study, rapamycin fed to mice beginning at 270 days of age also increased survival in both males and females, based on an interim analysis conducted near the median survival point. Rapamycin may extend lifespan by postponing death from cancer, by retarding mechanisms of ageing, or both. To our knowledge, these are the first results to demonstrate a role for mTOR signalling in the regulation of mammalian lifespan, as well as pharmacological extension of lifespan in both genders. These findings have implications for further development of interventions targeting mTOR for the treatment and prevention of age-related diseases.

3,216 citations

Journal ArticleDOI
TL;DR: Evaluation of rapamycin's effects on mice is likely to help delineate the role of the mammalian target ofRapamycin complexes in the regulation of aging rate and age-dependent diseases and may help to guide a search for drugs that retard some or all of the diseases of aging.
Abstract: Rapamycin was administered in food to genetically heterogeneous mice from the age of 9 months and produced significant increases in life span, including maximum life span, at each of three test sites. Median survival was extended by an average of 10% in males and 18% in females. Rapamycin attenuated age-associated decline in spontaneous activity in males but not in females. Causes of death were similar in control and rapamycin-treated mice. Resveratrol (at 300 and 1200 ppm food) and simvastatin (12 and 120 ppm) did not have significant effects on survival in male or female mice. Further evaluation of rapamycin's effects on mice is likely to help delineate the role of the mammalian target of rapamycin complexes in the regulation of aging rate and age-dependent diseases and may help to guide a search for drugs that retard some or all of the diseases of aging.

805 citations

Journal ArticleDOI
TL;DR: It is reported that genetic loss or systemic knockdown of Malat1 using antisense oligonucleotides (ASOs) in the MMTV-PyMT- and Her2/neu-amplified tumor organoids model results in slower tumor growth accompanied by significant differentiation into cystic tumors and a reduction in metastasis.
Abstract: Genome-wide analyses have identified thousands of long noncoding RNAs (lncRNAs). Malat1 (metastasis-associated lung adenocarcinoma transcript 1) is among the most abundant lncRNAs whose expression is altered in numerous cancers. Here we report that genetic loss or systemic knockdown of Malat1 using antisense oligonucleotides (ASOs) in the MMTV (mouse mammary tumor virus)-PyMT mouse mammary carcinoma model results in slower tumor growth accompanied by significant differentiation into cystic tumors and a reduction in metastasis. Furthermore, Malat1 loss results in a reduction of branching morphogenesis in MMTV-PyMT- and Her2/neu-amplified tumor organoids, increased cell adhesion, and loss of migration. At the molecular level, Malat1 knockdown results in alterations in gene expression and changes in splicing patterns of genes involved in differentiation and protumorigenic signaling pathways. Together, these data demonstrate for the first time a functional role of Malat1 in regulating critical processes in mammary cancer pathogenesis. Thus, Malat1 represents an exciting therapeutic target, and Malat1 ASOs represent a potential therapy for inhibiting breast cancer progression.

457 citations

Journal ArticleDOI
TL;DR: New pharmacological models for exploring processes that regulate the timing of aging and late‐life diseases are provided, and in particular for testing hypotheses about sexual dimorphism in aging and health are tested.
Abstract: Four agents — acarbose (ACA), 17-α-estradiol (EST), nordihydroguaiaretic acid (NDGA), and methylene blue (MB) — were evaluated for lifespan effects in genetically heterogeneous mice tested at three sites. Acarbose increased male median lifespan by 22% (P < 0.0001), but increased female median lifespan by only 5% (P = 0.01). This sexual dimorphism in ACA lifespan effect could not be explained by differences in effects on weight. Maximum lifespan (90th percentile) increased 11% (P < 0.001) in males and 9% (P = 0.001) in females. EST increased male median lifespan by 12% (P = 0.002), but did not lead to a significant effect on maximum lifespan. The benefits of EST were much stronger at one test site than at the other two and were not explained by effects on body weight. EST did not alter female lifespan. NDGA increased male median lifespan by 8–10% at three different doses, with P-values ranging from 0.04 to 0.005. Females did not show a lifespan benefit from NDGA, even at a dose that produced blood levels similar to those in males, which did show a strong lifespan benefit. MB did not alter median lifespan of males or females, but did produce a small, statistically significant (6%, P = 0.004) increase in female maximum lifespan. These results provide new pharmacological models for exploring processes that regulate the timing of aging and late-life diseases, and in particular for testing hypotheses about sexual dimorphism in aging and health.

297 citations

Journal ArticleDOI
TL;DR: The results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.
Abstract: As bona fide p53 transcriptional targets, miR-34 microRNAs (miRNAs) exhibit frequent alterations in many human tumor types and elicit multiple p53 downstream effects upon overexpression. Unexpectedly, miR-34 deletion alone fails to impair multiple p53-mediated tumor suppressor effects in mice, possibly due to the considerable redundancy in the p53 pathway. Here, we demonstrate that miR-34a represses HDM4, a potent negative regulator of p53, creating a positive feedback loop acting on p53. In a Kras-induced mouse lung cancer model, miR-34a deficiency alone does not exhibit a strong oncogenic effect. However, miR-34a deficiency strongly promotes tumorigenesis when p53 is haploinsufficient, suggesting that the defective p53-miR-34 feedback loop can enhance oncogenesis in a specific context. The importance of the p53/miR-34/HDM4 feedback loop is further confirmed by an inverse correlation between miR-34 and full-length HDM4 in human lung adenocarcinomas. In addition, human lung adenocarcinomas generate an elevated level of a short HDM4 isoform through alternative polyadenylation. This short HDM4 isoform lacks miR-34-binding sites in the 3' untranslated region (UTR), thereby evading miR-34 regulation to disable the p53-miR-34 positive feedback. Taken together, our results elucidated the intricate cross-talk between p53 and miR-34 miRNAs and revealed an important tumor suppressor effect generated by this positive feedback loop.

251 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

01 Apr 2012
TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

6,268 citations

Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.

5,792 citations

Journal ArticleDOI
09 Mar 2017-Cell
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR signaling network contributes to human disease is highlighted.

4,719 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations