scispace - formally typeset
Search or ask a question
Author

J. F. Grcar

Bio: J. F. Grcar is an academic researcher. The author has contributed to research in topics: Boundary value problem & Newton's method. The author has an hindex of 1, co-authored 1 publications receiving 1523 citations.

Papers
More filters
01 Jan 1998
TL;DR: In this paper, a Fortran computer program that computes species and temperature profiles in steady-state burner-stabilized and freely propagating laminar flames is described.
Abstract: This report documents a Fortran computer program that computes species and temperature profiles in steady-state burner-stabilized and freely propagating premixed laminar flames. The program accounts for finite rate chemical kinetics and multicomponent molecular transport. After stating the appropriate governing equations and boundary conditions, we discuss the finite difference discretization and the Newton method for solving the boundary value problem. Global convergence of this algorithm is aided by invoking time integration procedures when the Newton method has convergence difficulties. The program runs in conjunction with preprocessors for the chemical reaction mechanism and the transport properties. Transport property formulations include the option of using multicomponent or mixtureaveraged formulas for molecular diffusion. Discussion of two example problems illustrates many of the program's capabilities.

1,533 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a general scheme of polycyclic aromatic hydrocarbons (PAH) formation and sequential growth of PAH by reactions with stable and radical species, including single-ring aromatics, other PAH and acetylene, is discussed.

1,620 citations

Journal ArticleDOI
TL;DR: In this article, a computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames.

1,117 citations

Journal ArticleDOI
TL;DR: In this article, an updated detailed chemical kinetic model for soot formation is presented, which combines recent developments in gas phase reactions, aromatic chemistry, soot particle coagulation, and particle aggregation, and develops a new submodel for surface growth.

1,083 citations

Journal ArticleDOI
TL;DR: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios as discussed by the authors.
Abstract: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios. Over the series of experiments numerically investigated, the temperature ranged from 298 to 2700 K, the pressure from 0.05 to 87 atm, and the equivalence ratios from 0.2 to 6. Ignition delay times, flame speeds, and species composition data provide for a stringent test of the chemical kinetic mechanism, all of which are simulated in the current study with varying success. A sensitivity analysis was carried out to determine which reactions were dominating the H2/O2 system at particular conditions of pressure, temperature, and fuel/oxygen/diluent ratios. Overall, good agreement was observed between the model and the wide range of experiments simulated. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 603–622, 2004

931 citations

Journal ArticleDOI
TL;DR: Conditional moment closure (CMC) as mentioned in this paper is a well-known method for the prediction of turbulent reacting flows, with particular emphasis on combustion, and has been used extensively in the literature.

877 citations