scispace - formally typeset
Search or ask a question
Author

J. F. Stoddart

Bio: J. F. Stoddart is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Logic gate & NMOS logic. The author has an hindex of 1, co-authored 1 publications receiving 1527 citations.

Papers
More filters
Journal ArticleDOI
16 Jul 1999-Science
TL;DR: Logic gates were fabricated from an array of configurable switches, each consisting of a monolayer of redox-active rotaxanes sandwiched between metal electrodes, which provided a significant enhancement over that expected for wired-logic gates.
Abstract: Logic gates were fabricated from an array of configurable switches, each consisting of a monolayer of redox-active rotaxanes sandwiched between metal electrodes. The switches were read by monitoring current flow at reducing voltages. In the “closed” state, current flow was dominated by resonant tunneling through the electronic states of the molecules. The switches were irreversibly opened by applying an oxidizing voltage across the device. Several devices were configured together to produce AND and OR logic gates. The high and low current levels of those gates were separated by factors of 15 and 30, respectively, which is a significant enhancement over that expected for wired-logic gates.

1,553 citations


Cited by
More filters
Journal ArticleDOI
30 Nov 2000-Nature
TL;DR: ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation, is proposed.
Abstract: The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules—a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics—rectification, amplification and storage—was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.

2,853 citations

Journal ArticleDOI
09 Nov 2001-Science
TL;DR: This work demonstrates logic circuits with field-effect transistors based on single carbon nanotubes that exhibit a range of digital logic operations, such as an inverter, a logic NOR, a static random-access memory cell, and an ac ring oscillator.
Abstract: We demonstrate logic circuits with field-effect transistors based on single carbon nanotubes. Our device layout features local gates that provide excellent capacitive coupling between the gate and nanotube, enabling strong electrostatic doping of the nanotube from p-doping to n-doping and the study of the nonconventional long-range screening of charge along the one-dimensional nanotubes. The transistors show favorable device characteristics such as high gain (>10), a large on-off ratio (>10(5)), and room-temperature operation. Importantly, the local-gate layout allows for integration of multiple devices on a single chip. Indeed, we demonstrate one-, two-, and three-transistor circuits that exhibit a range of digital logic operations, such as an inverter, a logic NOR, a static random-access memory cell, and an ac ring oscillator.

2,642 citations

Journal ArticleDOI
TL;DR: The exciting successes in taming molecular-level movement thus far are outlined, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion are highlighted.
Abstract: The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.

2,301 citations

Journal ArticleDOI
TL;DR: The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives.
Abstract: The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives. After analyzing a few important examples of natural molecular machines, the most significant developments in the field of artificial molecular machines are highlighted. The systems reviewed include 1) chemical rotors, 2) photochemically and electrochemically induced molecular (conformational) rearrangements, and 3) chemically, photochemically, and electrochemically controllable (co-conformational) motions in interlocked molecules (catenanes and rotaxanes), as well as in coordination and supramolecular complexes, including pseudorotaxanes. Artificial molecular machines based on biomolecules and interfacing artificial molecular machines with surfaces and solid supports are amongst some of the cutting-edge topics featured in this review. The extension of the concept of a machine to the molecular level is of interest not only for the sake of basic research, but also for the growth of nanoscience and the subsequent development of nanotechnology.

2,099 citations

Journal ArticleDOI
09 Nov 2001-Science
TL;DR: It is shown that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with controllable electrical characteristics, and in addition, that these junctions can be used to create integrated nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode.
Abstract: Miniaturization in electronics through improvements in established “top-down” fabrication techniques is approaching the point where fundamental issues are expected to limit the dramatic increases in computing seen over the past several decades Here we report a “bottom-up” approach in which functional device elements and element arrays have been assembled from solution through the use of electronically well-defined semiconductor nanowire building blocks We show that crossed nanowire p-n junctions and junction arrays can be assembled in over 95% yield with controllable electrical characteristics, and in addition, that these junctions can be used to create integrated nanoscale field-effect transistor arrays with nanowires as both the conducting channel and gate electrode Nanowire junction arrays have been configured as key OR, AND, and NOR logic-gate structures with substantial gain and have been used to implement basic computation

2,087 citations