scispace - formally typeset
Search or ask a question
Author

J. Farine

Other affiliations: Carleton University
Bio: J. Farine is an academic researcher from Laurentian University. The author has contributed to research in topics: Sudbury Neutrino Observatory & Neutrino. The author has an hindex of 41, co-authored 124 publications receiving 12111 citations. Previous affiliations of J. Farine include Carleton University.


Papers
More filters
Journal ArticleDOI
Q. R. Ahmad1, R. C. Allen2, T. C. Andersen3, J. D. Anglin4  +202 moreInstitutions (18)
TL;DR: Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported, providing strong evidence for solar nu(e) flavor transformation.
Abstract: Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a kinetic energy threshold of 5 MeV. The non-nu(e) component is phi(mu)(tau) = 3.41(+0.45)(-0.45)(stat)(+0.48)(-0.45)(syst) x 10(6) cm(-2) s(-1), 5.3sigma greater than zero, providing strong evidence for solar nu(e) flavor transformation. The total flux measured with the NC reaction is phi(NC) = 5.09(+0.44)(-0.43)(stat)(+0.46)(-0.43)(syst) x 10(6) cm(-2) s(-1), consistent with solar models.

2,732 citations

Journal ArticleDOI
Q. R. Ahmad1, R. C. Allen2, T. C. Andersen3, J. D. Anglin4  +202 moreInstitutions (17)
TL;DR: In this paper, the total flux of 8B neutrinos was determined to be (5.44±0.99)×106 cm−2 s−1, in close agreement with the predictions of solar models.
Abstract: Solar neutrinos from the decay of 8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to νe, while the ES reaction also has a small sensitivity to νμ and ντ. The flux of νe from 8B decay measured by the CC reaction rate is φCC(ν e )=[1.75±0.07(stat.) −0.11 +0.12 (syst.)×0.05(theor.)]×106cm−2s−1. Assuming no flavor transformation, the flux inferred from the ES reaction rate is φES(ν x )=[2.39±0.34(stat.) −0.14 +0.16 (syst.)]×106cm−2s−1. Comparison of φCC(νe) to the Super-Kamiokande collaboration’s precision value of φES(νx) yields a 3.3σ difference, assuming the systematic uncertainties are normally distributed, providing evidence that there is a nonelectron flavor active neutrino component in the solar flux. The total flux of active 8B neutrinos is thus determined to be (5.44±0.99)×106 cm−2 s−1, in close agreement with the predictions of solar models.

1,514 citations

Journal ArticleDOI
Q. R. Ahmad1, R. C. Allen2, T. C. Andersen3, J. D. Anglin4  +202 moreInstitutions (18)
TL;DR: The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates, and a global solar neutRino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.
Abstract: The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.

865 citations

Journal ArticleDOI
S. N. Ahmed1, A. E. Anthony2, E. W. Beier3, Alain Bellerive4, S. D. Biller5, J. Boger6, M.G. Boulay7, M. G. Bowler5, T. J. Bowles7, S. J. Brice7, T. V. Bullard8, Yuen-Dat Chan9, M. L. Chen1, X. Chen9, B. T. Cleveland5, G. A. Cox8, X. Dai4, X. Dai5, F. Dalnoki-Veress4, P. J. Doe8, R. S. Dosanjh4, G. Doucas5, M. R. Dragowsky7, C. A. Duba8, F. A. Duncan1, Monica Dunford3, J. A. Dunmore5, E. D. Earle1, S. R. Elliott7, Hal Evans1, G. T. Ewan1, J. Farine4, J. Farine10, H. Fergani5, F. Fleurot10, Joseph A. Formaggio8, Malcolm M. Fowler7, K. Frame4, K. Frame5, B. G. Fulsom1, N. Gagnon, K. Graham1, Darren Grant4, R. L. Hahn6, J. C. Hall2, A. L. Hallin1, E. D. Hallman10, A. S. Hamer7, W. B. Handler1, C. K. Hargrove4, P. J. Harvey1, R. Hazama8, K. M. Heeger, W. J. Heintzelman3, J. Heise7, R. L. Helmer11, R. L. Helmer12, R. J. Hemingway4, Andrew Hime7, M. A. Howe8, P. Jagam13, N. A. Jelley5, Joshua R. Klein3, Joshua R. Klein2, M. Kos1, A. V. Krumins1, T. Kutter11, Christopher C. M. Kyba3, H. Labranche13, R. Lange6, J. Law13, I. T. Lawson13, K. T. Lesko9, J. R. Leslie1, I. Levine14, I. Levine4, S. Luoma10, R. MacLellan1, S. Majerus5, H. B. Mak1, J. Maneira1, A. D. Marino9, N. McCauley3, A. B. McDonald1, S. McGee8, G. McGregor5, C. Mifflin4, K.K.S. Miknaitis8, Guthrie Miller7, B. A. Moffat1, C. W. Nally11, Bernie G. Nickel13, A. J. Noble4, A. J. Noble1, A. J. Noble12, Eric B. Norman9, N. S. Oblath8, C. E. Okada9, R. W. Ollerhead13, John L. Orrell8, S. M. Oser3, S. M. Oser11, C. Ouellet1, S. J. M. Peeters5, A. W. P. Poon9, B. C. Robertson1, R. G. H. Robertson8, E. Rollin4, S. S.E. Rosendahl9, V. L. Rusu3, M. H. Schwendener10, O. Simard4, J. J. Simpson13, C. J. Sims5, David A. Sinclair4, David A. Sinclair12, P. Skensved1, M. W.E. Smith8, N. Starinsky4, R. G. Stokstad9, L. C. Stonehill8, Reda Tafirout10, Y. Takeuchi1, G. Tešić4, M. A. Thomson1, M. Thorman5, R. Van Berg3, R. G. Van de Water7, C. J. Virtue10, B. L. Wall8, D. Waller4, Chris Waltham11, H. Wan Chan Tseung5, D. L. Wark15, D. L. Wark16, N. West5, J. B. Wilhelmy7, J. F. Wilkerson8, J. R. Wilson5, J. M. Wouters7, Minfang Yeh6, Kai Zuber5 
TL;DR: The Sudbury Neutrino Observatory has precisely determined the total active (nu(x) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability.
Abstract: The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) B-8 solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21+/-0.27(stat)+/-0.38(syst)x10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(-0.6)(+1.2)x10(-5) eV(2) and theta= 32.5(-2.3)(+2.4) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

705 citations

Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: New results from EXO-200 based on a large 136Xe exposure are reported, finding no statistically significant evidence for 0νββ decay and set a half-life limit of 1.1 × 1025 years at the 90 per cent confidence level.
Abstract: Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions—that is, that neutrinos are their own anti-particles—but this assumption is difficult to confirm. Observation of neutrinoless double-β decay (0νββ), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with ^(76)Ge (the GERDA experiment) and ^(136)Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 10^(25) years, corresponding to a limit on the neutrino mass of 0.2–0.4 electronvolts. Here we report new results from EXO-200 based on a large ^(136)Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9 × 10^(25) years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0νββ decay and set a half-life limit of 1.1 × 10^(25) years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0νββ decay searches with an improved Xe-based experiment, nEXO.

487 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations

01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: In this article, the authors give simple mass-matrices leading to tri-bimaximal mixing, and discuss its relation to the Fritzsch-Xing democratic ansatz.

1,347 citations