scispace - formally typeset
Search or ask a question

Showing papers by "J. Fraser Stoddart published in 2015"


Journal ArticleDOI
TL;DR: This work reports a wholly artificial compound that acts on small molecules to create a gradient in their local concentration by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement.
Abstract: When supplied with redox energy, a dumbbell-shaped molecule can take small charged molecules from solution and thread them around an oligomethylene chain.

372 citations


Journal ArticleDOI
TL;DR: This work describes a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation, which constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable Solid State fluorescent materials.
Abstract: Tunable solid-state fluorescent materials are ideal for applications in security printing technologies. A document possesses a high level of security if its encrypted information can be authenticated without being decoded, while also being resistant to counterfeiting. Herein, we describe a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation. The dynamic nature of this fluorescent material is based on a complex set of equilibria, whose fluorescence output depends non-linearly on the chemical inputs and the composition of the paper. By applying this system in fluorescent security inks, the information encoded in polychromic images can be protected in such a way that it is close to impossible to reverse engineer, as well as being easy to verify. This system constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable solid-state fluorescent materials.

335 citations


Journal ArticleDOI
TL;DR: Critical for practical applications, NU-1103 combines for the first time ultrahigh surface area and water stability, where this material retained complete structural integrity after soaking in water.
Abstract: An isoreticular series of metal–organic frameworks (MOFs) with the ftw topology based on zirconium oxoclusters and tetracarboxylate linkers with a planar core (NU-1101 through NU-1104) has been synthesized employing a linker expansion approach. In this series, NU-1103 has a pore volume of 2.91 cc g–1 and a geometrically calculated surface area of 5646 m2 g–1, which is the highest value reported to date for a zirconium-based MOF and among the largest that have been reported for any porous material. Successful activation of the MOFs was proven based on the agreement of pore volumes and BET areas obtained from simulated and experimental isotherms. Critical for practical applications, NU-1103 combines for the first time ultrahigh surface area and water stability, where this material retained complete structural integrity after soaking in water. Pressure range selection for the BET calculations on these materials was guided by the four so-called “consistency criteria”. The experimental BET area of NU-1103 was ...

288 citations


Journal ArticleDOI
TL;DR: The complexation between γ- and β-cyclodextrins (γ- andβ-CDs) with an archetypal polyoxometalate (POM)--namely, the [PMo12O40](3-) trianion--which has led to the formation of two organic-inorganic hybrid 2:1 complexes, namely [La(H2O)9]{[PMo 12O40]⊂[γ-CD]
Abstract: Although complexation of hydrophilic guests inside the cavities of hydrophobic hosts is considered to be unlikely, we demonstrate herein the complexation between γ- and β-cyclodextrins (γ- and β-CDs) with an archetypal polyoxometalate (POM)—namely, the [PMo12O40]3– trianion—which has led to the formation of two organic–inorganic hybrid 2:1 complexes, namely [La(H2O)9]{[PMo12O40]⊂[γ-CD]2} (CD-POM-1) and [La(H2O)9] {[PMo12O40]⊂[β-CD]2} (CD-POM-2), in the solid state. The extent to which these complexes assemble in solution has been investigated by (i) 1H, 13C, and 31P NMR spectroscopies and (ii) small- and wide-angle X-ray scattering, as well as (iii) mass spectrometry. Single-crystal X-ray diffraction reveals that both complexes have a sandwich-like structure, wherein one [PMo12O40]3– trianion is encapsulated by the primary faces of two CD tori through intermolecular [C–H···O═Mo] interactions. X-ray crystal superstructures of CD-POM-1 and CD-POM-2 show also that both of these 2:1 complexes are lined up lon...

135 citations


Journal ArticleDOI
TL;DR: This work presents a novel and scalable approach to integrated nanosystems engineering that addresses the challenges of low-Carbon Chemistry and energy conservation in the low-tech environment.
Abstract: Dr. D. Chen, A.-J. Avestro, Dr. J. Sun, Z. Erno, Prof. J. Fraser Stoddart Department of Chemistry Northwestern University 2145 Sheridan Road , Evanston , IL 60208–3113 , USA E-mail: stoddart@northwestern.edu Dr. Z. Chen, Dr. K. Amine Chemical Sciences and Engineering Division Argonne National Laboratory 9700 South Cass Avenue, Building 200 , Argonne , IL 60439–4837 , USA Prof. S. Wang, Prof. M. Xiao, Prof. Y. Meng The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat-sen University Guangzhou 510275 , P. R. China Dr. M. M. Algaradah, Dr. M. S. Nassar Joint Center of Excellence in Integrated Nanosystems King Abdulaziz City for Science & Technology Riyadh 11442 , Kingdom of Saudi Arabia

131 citations


Journal ArticleDOI
TL;DR: A new metal-organic framework with porphyrinic struts and Hf6 nodes is reported, which demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant.
Abstract: Tandem catalytic systems, often inspired by biological systems, offer many advantages in the formation of highly functionalized small molecules. Herein, a new metal-organic framework (MOF) with porphyrinic struts and Hf6 nodes is reported. This MOF demonstrates catalytic efficacy in the tandem oxidation and functionalization of styrene utilizing molecular oxygen as a terminal oxidant. The product, a protected 1,2-aminoalcohol, is formed selectively and with high efficiency using this recyclable heterogeneous catalyst. Significantly, the unusual regioselective transformation occurs only when an Fe-decorated Hf6 node and the Fe-porphyrin strut work in concert. This report is an example of concurrent orthogonal tandem catalysis.

125 citations


Journal ArticleDOI
17 Aug 2015-ACS Nano
TL;DR: This review summarizes recent progress in making artificial molecular motors that can perform work by "pumping" tetracationic rings into high-energy states by designing a molecular pump prototype.
Abstract: The active transport of ions and molecules across cell membranes is essential to creating the concentration gradients that sustain life in all living organisms, be they bacteria, fungi, plants, animals or Homo sapiens. Nature uses active transport everywhere for everything. Molecular biologists have long been attracted to the study of active transport and continue to this day to investigate and elucidate the tertiary structures of the complex motor proteins that sustain it, while physicists, interested in nonequilibrium statistical mechanics, have developed theoretical models to describe the driven ratcheting motions that are crucial to its function. The increasingly detailed understanding that contemporary science has acquired relating to active transport, however, has yet to lead to the design and construction of artificial molecular motors capable of employing ratchet-driven motions that can also perform work against concentration gradients. Mechanically interlocked molecules (MIMs) in the form of pseu...

120 citations


Journal ArticleDOI
TL;DR: Fast subsequent intramolecular electron/hole hopping can equilibrate the six possible energetically degenerate ion-pair states, as suggested by electron paramagnetic resonance/electron-nuclear double resonance spectroscopy, which shows that one-electron reduction of the PDI triangle results in complete electron sharing among the three PDIs.
Abstract: We report on a visible-light-absorbing chiral molecular triangle composed of three covalently linked 1,6,7,12-tetra(phenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) units. The rigid triangular architecture reduces the electronic coupling between the PDIs, so ultrafast symmetry-breaking charge separation is kinetically favored over intramolecular excimer formation, as revealed by femtosecond transient absorption spectroscopy. Photoexcitation of the PDI triangle dissolved in CH2Cl2 gives PDI+•–PDI–• in τCS = 12.0 ± 0.2 ps. Fast subsequent intramolecular electron/hole hopping can equilibrate the six possible energetically degenerate ion-pair states, as suggested by electron paramagnetic resonance/electron–nuclear double resonance spectroscopy, which shows that one-electron reduction of the PDI triangle results in complete electron sharing among the three PDIs. Charge recombination of PDI+•–PDI–• to the ground state occurs in τCR = 1.12 ± 0.01 ns with no evidence of triplet excited state formation.

112 citations


Journal ArticleDOI
TL;DR: This strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines.
Abstract: The organization of trisradical rotaxanes within the channels of a Zr6-based metal–organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust ZrIV–carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet–visible–near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. The results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.

81 citations


Journal ArticleDOI
TL;DR: The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells and release doxorubicin under acidic conditions or in the presence of porcine liver esterase.
Abstract: Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells.

72 citations


Journal ArticleDOI
TL;DR: A tristable [2]catenane, composed of a macrocyclic polyether incorporating 1,5-dioxynaphthalene (DNP) and tetrathiafulvalene (TTF) units along with a 4,4'-bipyridinium (BIPY(•+)) radical cation as three very different potential recognition sites, interlocked mechanically with the tetracationic cyclophane.
Abstract: A tristable [2]catenane, composed of a macrocyclic polyether incorporating 1,5-dioxynaphthalene (DNP) and tetrathiafulvalene (TTF) units along with a 4,4′-bipyridinium (BIPY•+) radical cation as three very different potential recognition sites, interlocked mechanically with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT4+), was synthesized by donor–acceptor templation, employing a “threading-followed-by-cyclization” approach. In this catenane, movement of the CBPQT4+ ring in its different redox states among these three potential recognition sites, with corresponding color changes, is achieved by tuning external redox potentials. In the starting state, where no external potential is applied, the ring encircles the TTF unit and displays a green color. Upon oxidation of the TTF unit, the CBPQT4+ ring moves to the DNP unit, producing a red color. Finally, if all the BIPY2+ units are reduced to BIPY•+ radical cations, the resulting CBPQT2(•+) diradical dication will migrate to the BIPY•+ u...

Journal ArticleDOI
TL;DR: The combined results show that these copper(I) diimine complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection from the (1)MLCT state into TiO2 nanoparticles.
Abstract: Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)]+ and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)]+ (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient abs...

Journal ArticleDOI
TL;DR: Investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetrahedral cyclophanes.
Abstract: Artificial photosynthetic systems for solar energy conversion exploit both covalent and supramolecular chemistry to produce favorable arrangements of light-harvesting and redox-active chromophores in space. An understanding of the interplay between key processes for photosynthesis, namely light-harvesting, energy transfer, and photoinduced charge separation and the design of novel, self-assembling components capable of these processes are imperative for the realization of multifunctional integrated systems. We report our investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications. We show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetracationic cyclophanes. Spectroscopic techniques confirm energy transfer between the extended tetracationic cyclophanes and perylene diimide is ultrafast and quantitative, while the heterocycle specifically influences the energy transfer related parameters and the acceptor excited state.

Journal ArticleDOI
TL;DR: An artificial biomimetic system which sustains delicate secondary and tertiary structures, reminiscent of those present in nucleic acids and proteins, is reported, which is dominated by intermolecular radical-radical interactions.
Abstract: We report the synthesis of a series of homologous oligoviologens in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, as a prelude to investigating how their radical cationic forms self-assemble both in solution and in the solid state. The strong radical–radical interactions between the radical cationic forms of the BIPY2+ units—namely, BIPY•+—in these oligoviologens induce intra- or intermolecular folding of these homologues. UV/Vis/NIR spectroscopic studies and DFT quantum mechanics indicate that the folding of the shorter oligoviologens is dominated by intermolecular radical–radical interactions. In addition to intermolecular interactions, strong intramolecular radical–radical interactions, which give rise to an NIR absorption band at 900 nm, tend to play a crucial role in governing the folding of the longer oligoviologens. The solid-state superstructure of the oligoviologen with three BIPY2+ units reveals that two intertwining chains fold together to form...

Journal ArticleDOI
TL;DR: An extended viologen-based cyclophane—ExBox2(4+)—has been employed as a molecular receptor which, not only binds C60 one-on-one, but also results in the columnar self-assembly of the 1:1 inclusion complexes under ambient conditions.
Abstract: Although pristine C60 prefers to adopt a face-centered cubic packing arrangement in the solid state, it has been demonstrated that noncovalent-bonding interactions with a variety of molecular receptors lead to the complexation of C60 molecules, albeit usually with little or no control over their long-range order. Herein, an extended viologen-based cyclophane—ExBox24+—has been employed as a molecular receptor which, not only binds C60 one-on-one, but also results in the columnar self-assembly of the 1:1 inclusion complexes under ambient conditions. These one-dimensional arrays of fullerenes stack along the long axis of needle-like single crystals as a consequence of multiple noncovalent-bonding interactions between each of the inclusion complexes. The electrical conductivity of these crystals is on the order of 10–7 S cm–1, even without any evacuation of oxygen, and matches the conductivity of high-quality, unfunctionalized C60-based materials that typically require stringent high-temperature vaporization ...

Journal ArticleDOI
TL;DR: This work constitutes an example of the use of SALE to obtain otherwise challenging-to-synthesize MOFs that can serve as a platform for accomplishing selective organic transformations, in this case, exclusive monoesterification of trimesic acid.
Abstract: Intentional incorporation of defect sites functionalized with free carboxylic acid groups was achieved in a paddlewheel-based metal-organic framework (MOF) of rht topology, NU-125. Solvent-assisted linker exchange (SALE) performed on a mixed-linker derivative of NU-125 containing isophthalate (IPA) linkers (NU-125-IPA) led to the selective replacement of the IPA linkers in the framework with a conjugate base of trimesic acid (H3BTC). Only two of the three carboxylic acid moieties offered by H3BTC coordinate to the Cu2 centers in the MOF, yielding a rare example of a MOF decorated with free -COOH groups. The presence of the -COOH groups was confirmed by diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS); moreover, these groups were found to be available for postsynthesis elaboration (selective monoester formation). This work constitutes an example of the use of SALE to obtain otherwise challenging-to-synthesize MOFs. The resulting MOF, in turn, can serve as a platform for accomplishing selective organic transformations, in this case, exclusive monoesterification of trimesic acid.

Journal ArticleDOI
TL;DR: These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties.
Abstract: The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host–guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by...

Journal ArticleDOI
TL;DR: A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane.

Journal ArticleDOI
TL;DR: Investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release, and has been found to be tunable by varying both the structures and the concentrations of sugars.
Abstract: A sugar and pH dual-responsive controlled release system, which is highly specific towards molecular stimuli, has been developed based on the binding between catechol and boronic acid on a platform of mesoporous silica nanoparticles (MSNs). By grafting phenylboronic acid stalks onto the silica surface, catechol-containing β-cyclodextrins can be attached to the orifices of the MSNs’ nanopores through formation of boronate esters which block access to the nanopores. These esters are stable enough to prevent cargo molecules from escaping. The boronate esters disassociate in the presence of sugars, enabling the molecule-specific controlled-release feature of this hybrid system. The rate of release has been found to be tunable by varying both the structures and the concentrations of sugars, as a result of the competitive binding nature associated with the mechanism of its operation. Acidification also induces the release of cargo molecules. Further investigations show that the presence of both a low pH and sugar molecules provides cooperative effects which together control the rate of release.

Journal ArticleDOI
TL;DR: The modular synthesis of a shape-persistent chiral organic square composed of four naphthalene-1,8:4,5-bis(dicarboximide) (NDI) sides and four trans-2-cyclohexanediamine corners is reported, showing the formation of highly ordered, one-dimensional tubular superstructures.
Abstract: Understanding electronic communication among multiple chromophoric and redox units requires construction of well-defined molecular architectures. Herein, we report the modular synthesis of a shape-persistent chiral organic square composed of four naphthalene-1,8:4,5-bis(dicarboximide) (NDI) sides and four trans-1,2-cyclohexanediamine corners. Single crystal X-ray diffraction reveals some distortion of the cyclohexane chair conformation in the solid state. Analysis of the packing of the molecular squares reveals the formation of highly ordered, one-dimensional tubular superstructures, held together by means of multiple [CH⋅⋅⋅OC] hydrogen-bonding interactions. Steady-state and time-resolved electronic spectroscopies show strong excited-state interactions in both the singlet and triplet manifolds. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies on the monoreduced state reveal electron sharing between all four NDI subunits comprising the molecular square.

Journal ArticleDOI
TL;DR: The synthesis of a metal–organic framework whose two component types are incorporated within it in a manner that is robust with respect to changes of solution composition, and simulations show how other “magic number” ratios of components can be obtained by modulating the topology of a framework and the noncovalent interactions between component types.
Abstract: Multiple organic functionalities can now be apportioned into nanoscale domains within a metal-coordinated framework, posing the following question: how do we control the resulting combination of “heterogeneity and order”? Here, we report the creation of a metal–organic framework, MOF-2000, whose two component types are incorporated in a 2:1 ratio, even when the ratio of component types in the starting solution is varied by an order of magnitude. Statistical mechanical modeling suggests that this robust 2:1 ratio has a nonequilibrium origin, resulting from kinetic trapping of component types during framework growth. Our simulations show how other “magic number” ratios of components can be obtained by modulating the topology of a framework and the noncovalent interactions between component types, a finding that may aid the rational design of functional multicomponent materials.

Journal ArticleDOI
TL;DR: A series of regioselective di- and trifunctionalized pillar[5]arene derivatives have been synthesized by a deprotection-followed-by-activation strategy, and their constitutions have been established as a result of having access to their solid-state structures.

Journal ArticleDOI
TL;DR: Employing this strategy of redox control, this work has demonstrated a prototypical molecular switch that can be manipulated photochemically and chemically by sequential reduction and oxidation.
Abstract: We describe a visible light-driven switchable [2]catenane, composed of a Ru(bpy)32+ tethered cyclobis(paraquat-p-phenylene) (CBPQT4+) ring that is interlocked mechanically with a macrocyclic polyether consisting of electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4′-bipyridinium (BIPY2+) units. In the oxidized state, the CBPQT4+ ring encircles the DNP recognition site as a consequence of favorable donor–acceptor interactions. In the presence of an excess of triethanolamine (TEOA), visible light irradiation reduces the BIPY2+ units to BIPY(•+) radical cations under the influence of the photosensitizer Ru(bpy)32+, resulting in the movement of the CBPQT2(•+) ring from the DNP to the BIPY(•+) recognition site as a consequence of the formation of the more energetically favorable trisradical complex, BIPY(•+) ⊂ CBPQT2(•+). Upon introducing O2 in the dark, the BIPY(•+) radical cations are oxidized back to BIPY2+ dications, leading to the reinstatement of the CBPQT4+ ring encircled around the DNP...

Journal ArticleDOI
TL;DR: Host-guest properties of the molecular receptor can be tuned and modulated allosterically, where the association of a heterotropic effector at the periphery of the molecule serves to modulate its affinity for the globular, electron-rich guest that resides within its molecular cavity.
Abstract: The synthesis and recognition phenomena of a tetracationic molecular receptor that possesses a nanometer-sized molecular cavity are described. The host-guest properties of the molecular receptor can be tuned and modulated allosterically, where the association of a heterotropic effector at the periphery of the molecule serves to modulate its affinity for the globular, electron-rich guest that resides within its molecular cavity. This stimuli-responsive host-guest behavior was observed in both the solution phase and the crystalline solid state, and can be reversed with high fidelity by sequestration of the effector molecule.

Journal ArticleDOI
TL;DR: H NMR spectroscopic analysis of this hexacationic [2]catenane shows a dramatic upfield shift of the resonances associated with the olefinic and allylic protons as a result of them residing inside the tetracationic component.
Abstract: Synthesis of an electrochemically addressable [2]catenane has been achieved following formation by templation of a [2]pseudorotaxane employing radically enhanced molecular recognition between the bisradical dication obtained on reduction of the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), and the radical cation generated on reduction of a viologen disubstituted with p-xylylene units, both carrying tetraethylene glycol chains terminated by allyl groups. This inclusion complex was subjected to olefin ring-closing metathesis, which was observed to proceed under reduced conditions, to mechanically interlock the two components. Upon oxidation, Coulombic repulsion between the positively charged and mechanically interlocked components results in the adoption of a co-conformation where the newly formed alkene resides inside the cavity of the tetracationic cyclophane. 1H NMR spectroscopic analysis of this hexacationic [2]catenane shows a dramatic upfield shift of the resonances associated with the ole...

Journal ArticleDOI
TL;DR: In this paper, an approach to the supramolecular syntheses of discrete multicomponent aggregates of noncovalently bound molecules, i.e., supermolecules, is described.
Abstract: An approach to the supramolecular syntheses of discrete multicomponent aggregates of noncovalently bound molecules, i.e., supermolecules, is described. This approach involved the careful analysis of X-ray crystal structures so as to permit a gradual increase in superstructural complexity. Many elaborate supermolecules were synthesized noncovalently from dialkylammonium-containing cations and crown ethers, following the initial observation that the dibenzylammonium ion threads through dibenzo[24]crown-8 to generate a singly stranded, singly encircled [2]pseudorotaxane, principally as a result of \([{\text{N}}^{\text{ + }} - {\text{H}} \cdot \cdot \cdot {\text{O}}]\) and \([{\text{C}} - {\text{H}} \cdot \cdot \cdot {\text{O}}]\) hydrogen bond formation. The scope of the fundamental recognition motif obtained from this initial observation was then broadened, through the use of thread-like ions with multiple dialkylammonium centers and/or larger crown ethers, so that multiply stranded and/or multiply encircled pseudorotaxanes could be prepared. Cations bearing both dialkylammonium and crown ether recognition sites were also used for the nocovalent synthesis of a discrete daisy chain supermacrocycle and the basic recognition motif was combined with other motifs for the production of a wide range of novel superarchitectures. As a greater understanding of the noncovalent interactions governing the self-assembly of the complex superarchitectures was acquired, new protocols for the noncovalent syntheses of doubly docked pseudorotaxanes and interwoven supramolecular bundles, including a supramolecular analogue of the photosynthetic special pair, were developed. The discovery that anions can play a prominent role in the solid-state self-assembly of some of the supermolecules was a valuable spinoff of the research.

Journal ArticleDOI
TL;DR: In this article, size complementary stopping groups were used to determine the kinetics of threading a cyclophane, namely cyclobis(paraquat-p-phenylene), onto a series of molecular dumbbells.

Journal ArticleDOI
TL;DR: A rigid octacationic tetraviologen-based cyclophane, (8+), is reported, which is capable of encapsulating either two small π-aromatic guest molecules, such as PhMe and PhCl, simultaneously, or one large molecule, e.g., bis-1,5-dinaphtho[50]crown-14.

Journal ArticleDOI
TL;DR: A versatile surface-functionalization strategy applicable to mesoporous silica nanoparticles, which could potentially serve as drug delivery vehicles, is described that makes use of alkoxyamine tethers on the surface of the nanoparticles.

Journal ArticleDOI
24 Feb 2015-ACS Nano
TL;DR: Investigations reveal that a number of 2,9-diazaperopyrenium dications show similar activities as doxorubicin toward a variety of cancer cell lines, and reports the solid-state structures of these dications, and relates their tendency to aggregate in solution to their toxicity profiles.
Abstract: Polyaromatic compounds are well-known to intercalate DNA. Numerous anticancer chemotherapeutics have been developed upon the basis of this recognition motif. The compounds have been designed such t...