scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives.
Abstract: The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives. After analyzing a few important examples of natural molecular machines, the most significant developments in the field of artificial molecular machines are highlighted. The systems reviewed include 1) chemical rotors, 2) photochemically and electrochemically induced molecular (conformational) rearrangements, and 3) chemically, photochemically, and electrochemically controllable (co-conformational) motions in interlocked molecules (catenanes and rotaxanes), as well as in coordination and supramolecular complexes, including pseudorotaxanes. Artificial molecular machines based on biomolecules and interfacing artificial molecular machines with surfaces and solid supports are amongst some of the cutting-edge topics featured in this review. The extension of the concept of a machine to the molecular level is of interest not only for the sake of basic research, but also for the growth of nanoscience and the subsequent development of nanotechnology.

2,099 citations

Journal ArticleDOI
TL;DR: Some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.
Abstract: Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.

1,880 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a flavor of how self-assembly operates in natural systems and can be harnessed in unnatural ones by utilizing inter-actions as diverse as aromatic π-π stacking and metal-ligand coordination for the information source for assembly processes.
Abstract: Although there are no fundamental factors hindering the development of nanoscale structures, there is a growing realization that “engineering down” approaches, in other words a reduction in the size of structures generated by lithographic techniques below the present lower limit of roughly 1 μm, may become impractical. It has, therefore, become increasingly clear that only by the development of a fundamental understanding of the self-assembly of large-scale biological structures, which exist and function at and beyond the nanoscale, downwards, and the extension of our knowledge regarding the chemical syntheses of small-scale structures upwards, can the gap between the promise and the reality of nanosystems be closed. This kind of construction of nanoscale structures and nanosystems represents the so-called “bottom up” or “engineering up” approach to device fabrication. Significant progress can be made in the development of nanoscience by transferring concepts found in the biological world into the chemical arena. Central to this mission is the development of simple chemical systems capable of instructing their own organization into large aggregates of molecules through their mutual recognition properties. The precise programming of these recognition events, and hence the correct assembly of the growing superstructure, relies on a fundamental understanding and the practical exploitation of non-covalent bonding interactions between and within molecules. The science of supramolecular chemistry—chemistry beyond the molecule in its very broadest sense—has started to bridge the yawning gap between molecular and macro-molecular structures. By utilizing inter-actions as diverse as aromatic π–π stacking and metal–ligand coordination for the information source for assembly processes, chemists have, in the last decade, begun to use biological concepts such as self-assembly to construct nanoscale structures and superstructures with a variety of forms and functions. Here, we provide a flavor of how self-assembly operates in natural systems and can be harnessed in unnatural ones.

1,766 citations

Journal ArticleDOI
25 May 2012-Science
TL;DR: A strategy to expand the pore aperture of metal-organic frameworks (MOFs) into a previously unattained size regime (>32 angstroms) is reported, as evidenced by their permanent porosity and high thermal stability (up to 300°C).
Abstract: We report a strategy to expand the pore aperture of metal-organic frameworks (MOFs) into a previously unattained size regime (>32 angstroms). Specifically, the systematic expansion of a well-known MOF structure, MOF-74, from its original link of one phenylene ring (I) to two, three, four, five, six, seven, nine, and eleven (II to XI, respectively), afforded an isoreticular series of MOF-74 structures (termed IRMOF-74-I to XI) with pore apertures ranging from 14 to 98 angstroms. All members of this series have noninterpenetrating structures and exhibit robust architectures, as evidenced by their permanent porosity and high thermal stability (up to 300°C). The pore apertures of an oligoethylene glycol–functionalized IRMOF-74-VII and IRMOF-74-IX are large enough for natural proteins to enter the pores.

1,637 citations

Journal ArticleDOI
TL;DR: This tutorial review provides an outlook on nanomaterials that are currently being used for theranostic purposes, with a special focus on mesoporous silica nanoparticle (MSNP) based materials.
Abstract: This tutorial review provides an outlook on nanomaterials that are currently being used for theranostic purposes, with a special focus on mesoporous silica nanoparticle (MSNP) based materials. MSNPs with large surface area and pore volume can serve as efficient carriers for various therapeutic agents. The functionalization of MSNPs with molecular, supramolecular or polymer moieties, provides the material with great versatility while performing drug delivery tasks, which makes the delivery process highly controllable. This emerging area at the interface of chemistry and the life sciences offers a broad palette of opportunities for researchers with interests ranging from sol–gel science, the fabrication of nanomaterials, supramolecular chemistry, controllable drug delivery and targeted theranostics in biology and medicine.

1,619 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations