scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the threaded 1:1 complexa [2]pseudorotaxanedoes was synthesized from solution in a process which was presumably kinetically controlled by tetrabenzo[24]crown-8 molecules and DBA+ cations.

20 citations

Journal ArticleDOI
TL;DR: This organic counteranion co-assembly strategy opens up new routes for the construction of hybrid frameworks, which are inaccessible by existing de novo MOF assembly methodologies.
Abstract: A class of γ-cyclodextrin-containing hybrid frameworks (CD-HFs) has been synthesized, employing γ-cyclodextrin (γ-CD) as the primary building blocks, along with 4-methoxysalicylate (4-MS-) anions as the secondary building blocks. CD-HFs are constructed through the synergistic exploitation of coordinative, electrostatic, and dispersive forces. The syntheses have been carried out using an organic counteranion co-assembly strategy, which allows for the introduction of 4-MS-, in place of inorganic OH-, into the cationic γ-CD-containing metal-organic frameworks (CD-MOFs). Although the packing arrangement of the γ-CD tori in the solid-state superstructure of CD-HFs is identical to that of the previously reported CD-MOFs, CD-HFs crystallize with lower symmetry and in the cuboid space group P43212-when compared to CD-MOF-1, which has the cubic unit cell of I432 space group-on account of the chiral packing of the 4-MS- anions in the CD-HF superstructures. Importantly, CD-HFs have ultramicroporous apertures associated with the pore channels, a significant deviation from CD-MOF-1, as a consequence of the contribution from the 4-MS- anions, which serve as supramolecular baffles. In gas adsorption-desorption experiments, CD-HF-1 exhibits a Brunauer-Emmett-Teller (BET) surface area of 306 m2 g-1 for CO2 at 195 K, yet does not uptake N2 at 77 K, confirming the difference in porosity between CD-HF-1 and CD-MOF-1. Furthermore, the 4-MS- anions in CD-HF-1 can be exchanged with OH- anions, leading to an irreversible single-crystal to single-crystal transformation, with rearrangement of coordinated metal ions. Reversible transformations were also observed in CD-MOF-1 when OH- ions were exchanged for 4-MS- anions, with the space group changing from I432 to R32. This organic counteranion co-assembly strategy opens up new routes for the construction of hybrid frameworks, which are inaccessible by existing de novo MOF assembly methodologies.

20 citations

Journal ArticleDOI
TL;DR: CD spectroscopy reveals that the different modes of binding of the enantiomeric substrates by the axially chiral tetracationic cyclophane are not accompanied by drastically different core geometries for the [2]pseudorotaxanes.

20 citations

Journal ArticleDOI
TL;DR: A functionalised cyclobis(paraquat-p-phenylene) attached by a rigid linker to a tetrathiafulvalene unit, which is incapable of self-complexation, forms preferentially a [c2]daisy chain which undergoes rapid disassociation and reassociation on the (1)H NMR time-scale above room temperature.

20 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that linear and cyclic molecules with a saturated bipyridinium-ethane backbone exhibit a similar conductance signature when compared to molecules with conjugated bipyrithinium -ethene backbones.
Abstract: Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.

20 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations