scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: Monitoring the fate of the rotaxanes' charge transfer absorption bands provides evidence for preferential mechanical degradation of a midsection rotaxane unit as compared to a terminal rotAXane entity as a consequence of mechanical forces accumulating in the central region of the polymer chain.

19 citations

Journal ArticleDOI
TL;DR: This research lays the solid foundation for the introduction of the structurally transformative tetracationic cyclophane into the realm of mechanically interlocked molecules and will provide a toolbox to construct and operate intelligent molecular machines.
Abstract: Synthetic macrocycles capable of undergoing allosteric regulation by responding to versatile external stimuli are the subject of increasing attention in supramolecular science. Herein, we report a structurally transformative tetracationic cyclophane containing two 3,6-bis(4-pyridyl)-l,2,4,5-tetrazine (4-bptz) units, which are linked together by two p-xylylene bridges. The cyclophane, which possesses modular redox states and structural post-modifications, can undergo two reversibly consecutive two-electron reductions, affording first its bisradical dicationic counterpart, and then subsequently the fully reduced species. Furthermore, one single-parent cyclophane can afford effectively three other new analogs through box-to-box cascade transformations, taking advantage of either reductions or an inverse electron-demand Diels-Alder (IEDDA) reaction. While all four new tetracationic cyclophanes adopt rigid and symmetric box-like conformations, their geometries in relation to size, shape, electronic properties, and binding affinities toward polycyclic aromatic hydrocarbons can be readily regulated. This structurally transformative tetracationic cyclophane performs a variety of new tasks as a result of structural post-modifications, thus serving as a toolbox for probing the radical properties and generating rapidly a range of structurally diverse cyclophanes by efficient divergent syntheses. This research lays a solid foundation for the introduction of the structurally transformative tetracationic cyclophane into the realm of mechanically interlocked molecules and will provide a toolbox to construct and operate intelligent molecular machines.

19 citations

Journal ArticleDOI
TL;DR: In this article, the imine bond is used as a dynamic covalent bond in the template-directed synthesis of molecular compounds, and its applications are discussed and a tutorial review is given.
Abstract: The imine bond – formed by the reversible condensation of an amine and an aldehyde – and its applications as a dynamic covalent bond in the template-directed synthesis of molecular compounds, will be the focus of this tutorial review. Template-directed synthesis – or expressed another way, supramolecular assistance to covalent synthesis – relies on the use of reversible noncovalent bonding interactions between molecular building blocks in order to preorganise them into a certain relative geometry as a prelude to covalent bond formation to afford the thermodynamically preferred product. The use of this so-called dynamic covalent chemistry (DCC) in templated reactions allows for an additional amount of reversibility, further eliminating potential kinetic products by allowing the covalent bonds that are formed during the template-directed reaction to be ‘proofread for errors’, thus making it possible for the reaction to search out its thermodynamic minimum. The marriage of template-directed synthesis with DCC has allowed chemists to construct an increasingly complex collection of compounds from relatively simple precursors. This new paradigm in organic synthesis requires that each individual piece in the molecular self-assembly process is preprogrammed so that the multiple recognition events expressed between the pieces are optimised in a highly cooperative manner in the desired product. It offers an extremely simple way of making complex mechanically interlocked compounds – e.g., catenanes, rotaxanes, suitanes, Borromean rings and Solomon knots – from relatively simple precursors.

19 citations

Journal ArticleDOI
TL;DR: The self-assembly of a number of rotaxanes, pseudorotaxanes and a pseudopolyrotaxane based on the π-electron deficient cyclobis(paraquat-p-phenylene)d and threads and dumbbell components composed of πelectron rich hydroquinone rings incorporated symmetrically within polyether chains terminated in the case of the rotaxane by adamantoyl stoppers was described in this article.
Abstract: The self-assembly of a number of rotaxanes, pseudorotaxanes, and a pseudopolyrotaxane based on the π-electron deficient cyclobis(paraquat-p-phenylene)d and threads and dumbbell components composed of π-electron rich hydroquinone rings incorporated symmetrically within polyether chains terminated in the case of the rotaxanes by adamantoyl stoppers

19 citations

Journal ArticleDOI
TL;DR: In this paper, the stereospecific synthesis of (2R,3R,8R,9R,14R,15R)-2,3,8, 9, 14, 15-hexaphenyl-1,4,7,10,13,16-hexaoxacyclooctadedecane [(R,R, R, R,R,
Abstract: The stereospecific synthesis of (2R,3R,8R,9R,14R,15R)-2,3,8,9,14, 15-hexaphenyl-1,4,7,10,13,16-hexaoxacyclooctadedecane [(R,R,R, R,R,R)-12] from (R,R)-hydrobenzoin [(R,R)-1] is reported. The ability of (R,R,R,R,R,R)-12 to act as a chiral solid-liquid phase-transfer catalyst in an asymmetric Michael addition is compared with the deficiencies of other chiral di- and tetra-substituted 18-crown-6 derivatives, both with respect to product conversions and chirality transfers from catalysts to products

19 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations