scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the ammine(η5-cyclopentadienyl) dicarbonyl-iron(II) cation and the neutral complex amminepentacarbonyltungsten(0), form 1:1 adducts in solution with 18crown-6 and dibenzo-18crown 6 by virtue of hydrogen bonding between ammine ligand in the transition metal complex and oxygen atoms of the crown ether.
Abstract: The[ammine(η5-cyclopentadienyl) dicarbonyl-iron(II)] cation and the neutral complex amminepentacarbonyltungsten(0), form 1:1 adducts in solution with 18-crown-6 and dibenzo-18-crown-6 by virtue of hydrogen bonding between the ammine ligand in the transition metal complex and oxygen atoms of the crown ether; a crystalline adduct, [W(CO)5NH3 dibenzo-18-crown-6], has been isolated as a benzene solvate.

9 citations

Journal ArticleDOI
TL;DR: In this article , an electric molecular motor based on a [3]catenane was described, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop.
Abstract: Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors1-3 that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane4,5, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet7,8, whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by FOF1 ATP synthase9. The unidirectionality is powered by an oscillating10 voltage11,12 or external modulation of the redox potential13. Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound14 electric molecular motors.

9 citations

Journal ArticleDOI
TL;DR: The story of CD-MOFs is told, a scientific discovery that was made in the research laboratory at the Northwestern University, and the subsequent commercialization ofCD-MOF technology on the part of a spinoff company, which developed a line of successful skin care products.
Abstract: ConspectusCyclodextrin-based metal-organic frameworks (CD-MOFs), derived from γ-cyclodextrin (γ-CD) and potassium ions, constitute a new class of porous, renewable, and edible MOFs that can be synthesized wholly from naturally occurring starting materials on a large scale. γ-CD is a C8 symmetrical cyclic oligosaccharide, composed of eight asymmetric α-1,4-linked d-glucopyranosyl residues, which possesses a bucket-shaped cavity with an inner diameter of ∼1 nm and a depth of ∼0.8 nm. Upon combining 1 equiv of γ-CD with 8 equiv of potassium hydroxide in aqueous solution, followed by vapor-diffusion of MeOH (or EtOH) into the solution during several days, CD-MOF-1 is obtained as cubic crystals. It was discovered serendipitously in 2010 as the first CD-MOF with a cubic cell of space group I432 and unit cell dimensions of approximately 31 × 31 × 31 Å3. Other CD-MOFs, namely, CD-MOF-2 and CD-MOF-3, can be obtained, respectively, wherein potassium is replaced with rubidium and cesium ions. CD-MOFs comprise infinite body-centered frameworks of (γ-CD)6 cubic units linked by alkali metal cations with spherical pores which reside at the center of the cubes interconnected by both cylindrical and triangular channels.During the past decade, CD-MOFs have emerged as a new class of multifunctional materials based on a porous framework with an extended structure displaying robust crystallinity, permanent porosity, and biocompatibility. The family of CD-MOFs has been enlarged by a growing collection of metal nodes involving alkali metal cations (Li+, Na+, K+, Rb+, Cs+) and γ-CD as well as its derivatives. As a result of the ability of their porous extended frameworks to absorb guest molecules, including gases, drug molecules, metal-based nanoclusters, and nanoparticles, CD-MOFs have potential applications in areas as disparate as adsorption and separation, sensing, template syntheses of metal-based nanoparticles and gels, electrical memory, drug delivery, and catalyst stabilization.In this Account, we tell the story of CD-MOFs, a scientific discovery that was made in our research laboratory at the Northwestern University, and the subsequent commercialization of CD-MOF technology on the part of a spinoff company, which developed a line of successful skin care products. This Account includes representative synthetic methods for the preparation of CD-MOFs, along with a brief overview of their structural features and a general summary of their state-of-the-art applications. The examples, however, are only illustrative, and a significant body of additional findings is emanating from our own laboratory and others, especially in the development of new synthetic strategies, tuning the framework stabilities, and exploring the guest-inclusion properties of CD-MOFs. We refer readers to communications, papers, and reviews on CD-MOFs and to references therein. We also put on record how CD-MOFs have been rebranded as organic molecular vessels (OMVs), a smart, functional, environmentally friendly delivery platform for commercial skin care applications. We hope that, in the telling and retelling of the story of CD-MOFs, this Account may encourage the commercialization of discoveries that have been made in other research laboratories.

9 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations