scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: This Account rationalizes the kinetic behavior in the ground state for a large assortment of bistable MIMs, including both rotaxanes and catenanes, and discusses progress toward achieving mechanostereoselective motion, a key principle in the design and realization of artificial molecular machines capable of doing work at the molecular level.
Abstract: Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life’s most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor–acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems.These...

150 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that supramolecular architectures, such as the pseudopolyrotaxane, provide tools for investigating protein-carbohydrate interactions.
Abstract: A self-assembled pseudopolyrotaxane consisting of lactoside-displaying cyclodextrin (CD) "beads" threaded onto a linear polyviologen "string" was investigated for its ability to inhibit galectin-1-mediated T-cell agglutination. The CDs of the pseudopolyrotaxane are able to spin around the axis of the polymer chain as well as to move back and forth along its backbone to alter the presentation of its ligand. This supramolecular superstructure incorporates all the advantages of polymeric structures, such as the ability to span large distances, along with a distinctively dynamic presentation of its lactoside ligands to afford a neoglycoconjugate that can adjust to the relative stereochemistries of the lectin's binding sites. The pseudopolyrotaxane exhibited a valency-corrected 10-fold enhancement over native lactose in the agglutination assay, which was greater than the enhancements observed for lactoside-bearing trivalent glycoclusters and a lactoside-bearing chitosan polymer tested using the same assay. The experimental results indicate that supramolecular architectures, such as the pseudopolyrotaxane, provide tools for investigating protein-carbohydrate interactions.

149 citations

Journal ArticleDOI
TL;DR: Irrespective of the environment--solution, self-assembled monolayer or solid-state polymer gel--and of the molecular structure--rotaxane or catenane--a single and generic switching mechanism is observed for all bistable molecules, indicating that the detailed chemical structure influences the rates of movement.
Abstract: The influences of different physical environments on the thermo- dynamics associated with one key step in the switching mechanism for a pair of bistable catenanes and a pair of bi- stable rotaxanes have been investigated systematically. The two bistable cate- nanes are comprised of a cyclobis(para- quat-p-phenylene) (CBPQT 4 + ) ring, or its diazapyrenium-containing analogue, that are interlocked with a macrocyclic polyether component that incorporates the strong tetrathiafulvalene (TTF) donor unit and the weaker 1,5-dioxy- naphthalene (DNP) donor unit. The two bistable rotaxanes are comprised of a CBPQT 4 + ring, interlocked with a dumbbell component in which one in- corporates TTF and DNP units, where- as the other incorporates a monopyr- rolotetrathiafulvalene (MPTTF) donor and a DNP unit. Two consecutive cycles of a variable scan rate cyclic vol- tammogram (10-1500 mV s � 1 ) per- formed on all of the bistable switches (~ 1m m) in MeCN electrolyte solutions (0.1 m tetrabutylammonium hexafluoro- phosphate) across a range of tempera- tures (258-303 K) were recorded in a temperature-controlled electrochemical cell. The second cycle showed different intensities of the two features that were observed in the first cycle when the cyclic voltammetry was recorded at fast scan rates and low temperatures. The first oxidation peak increases in in- tensity, concomitant with a decrease in the intensity of the second oxidation peak. This variation changed systemati- cally with scan rate and temperature and has been assigned to the molecular mechanical movements within the cate- nanes and rotaxanes of the CBPQT 4 + ring from the DNP to the TTF unit. The intensities of each peak were as- signed to the populations of each co- conformation, and the scan-rate varia- tion of each population was analyzed to obtain kinetic and thermodynamic data for the movement of the CBPQT 4 + ring. The Gibbs free energy of activation at 298 K for the thermally activated movement was calculated to be 16.2 kcal mol � 1 for the rotaxane, and 16.7 and 19.2 kcal mol � 1 for the bipyri- dinium- and diazapyrenium-based bi- stable catenanes, respectively. These values differ from those obtained for the shuttling and circumrotational mo- tions of degenerate rotaxanes and cate- nanes, respectively, indicating that the detailed chemical structure influences the rates of movement. In all cases, when the same bistable compounds were characterized in an electrolyte gel, the molecular mechanical motion slowed down significantly, concomitant with an increase in the activation barri- ers by more than 2 kcal mol � 1 . Irrespec- tive of the environment—solution, self- assembled monolayer or solid-state polymer gel—and of the molecular structure—rotaxane or catenane—a single and generic switching mecha- nism is observed for all bistable mole- cules.

149 citations

Journal ArticleDOI
TL;DR: It is shown that ibuprofen can be incorporated within CD-MOF-1 either by a crystallization process using the potassium salt of ibUprofen as the alkali cation source for production of the MOF or by absorption and deprotonation of the free-acid, leading to an uptake of 23-26 wt % of ib uprofen within the CD- MOF.
Abstract: Although ibuprofen is one of the most widely used nonsteroidal anti-inflammatory drugs (NSAIDs), it exhibits poor solubility in aqueous and physiological environments as a free acid. In order to improve its oral bioavailability and rate of uptake, extensive research into the development of new formulations of ibuprofen has been undertaken, including the use of excipients as well as ibuprofen salts, such as ibuprofen lysinate and ibuprofen, sodium salt. The ultimate goals of these studies are to reduce the time required for maximum uptake of ibuprofen, as this period of time is directly proportional to the rate of onset of analgesic/anti-inflammatory effects, and to increase the half-life of the drug within the body; that is, the duration of action of the effects of the drug. Herein, we present a pharmaceutical cocrystal of ibuprofen and the biocompatible metal–organic framework called CD-MOF. This metal–organic framework (MOF) is based upon γ-cyclodextrin (γ-CD) tori that are coordinated to alkali metal c...

147 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations