scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a linear free energy relationship (LFER) has been found between the pseudorotaxane stability constants (Kas) and the Hammett substituent constants (σ).
Abstract: The crown ether dibenzo[24]crown-8 (DB24C8) is interpenetrated by a wide range of disubstituted dibenzylammonium cations to generate [2]pseudorotaxane complexes by virtue of, inter alia, hydrogen bonds. 1H NMR spectroscopic measurements indicate that the solution phase binding strengths of the pseudorotaxane complexes can be controlled accurately via judicious manipulation of the substituents attached to the dibenzylammonium cations’ aryl rings. A linear free energy relationship (LFER) has been found to exist between the complexes’ stability constants (Kas) and the Hammett substituent constants (σ). X-Ray crystallographic analyses of the pseudorotaxanes reveal that each of their discrete supramolecular units display similar solid state superstructures. However, these analyses also demonstrate that the pseudorotaxanes associate with one another, via a myriad of intersupramolecular packing motifs, to generate a wide range of novel superarchitectures.

83 citations

Journal ArticleDOI
TL;DR: For example, CD-MOF-1 is a C8-symmetrical cyclic oligosaccharide composed of eight asymmetric α-1,4-linked d-glucopyranosyl residues that possesses a bucket-shaped cavity with an inner diameter of ∼ 1 nm and a depth of ∼08 nm as mentioned in this paper.
Abstract: Cyclodextrin-based metal-organic frameworks (CD-MOFs), derived from γ-cyclodextrin (γ-CD) and alkali metal cations, constitute a class of porous, renewable, and edible MOFs that can be synthesized from a naturally occurring carbohydrate on a large scale γ-CD is a C8-symmetrical cyclic oligosaccharide composed of eight asymmetric α-1,4-linked d-glucopyranosyl residues that possesses a bucket-shaped cavity with an inner diameter of ∼1 nm and a depth of ∼08 nm Upon combination of 1 equiv of γ-CD with 8 equiv of potassium hydroxide in an aqueous solution, followed by vapor diffusion of MeOH (or EtOH) into this solution during several days, CD-MOF-1 is obtained as cubic crystals This carbohydrate-based MOF, which was discovered serendipitously in 2010, was the first highly crystalline CD-MOF to be obtained X-ray crystallography of a single crystal reveals that it adopts the space group I432 with unit cell dimensions of approximately 31 × 31 × 31 A3 Other CD-MOFs, namely, CD-MOF-2 and CD-MOF-3, can be obtained when potassium ions are replaced by rubidium and cesium ions, respectively CD-MOFs comprise extended body-centered frameworks of (γ-CD)6 cubic units, which contain spherical pores that reside at the center of the cubes, interconnected by alkali metal cations, forming both cylindrical and triangular channelsDuring the past decade, CD-MOFs have emerged as a useful class of multifunctional materials based on porous frameworks with extended structures displaying robust crystallinity, permanent porosity, and excellent biocompatibility The family of CD-MOFs has been joined by a growing collection of metal nodes involving alkali metal cations (Li+, Na+, K+, Rb+, Cs+) and γ-CD as well as its derivatives As a result of the ability of their extended porous frameworks to absorb guest molecules, including gases, drugs, metal-based nanoclusters, and nanoparticles, CD-MOFs have potential applications in areas as disparate as templating syntheses of metal-based nanoparticles and gels, adsorption and separation, trapping highly reactive intermediates, catalyst supports, sensing, electrical memory, and drug deliveryIn this Account, we tell the story of CD-MOFs, a scientific discovery made in our research laboratory at Northwestern University, and the opportunities to use these environmentally friendly porous materials across different fields of science and technology The story includes representative synthetic protocols for the preparation of CD-MOFs, along with an overview of their structural features, functionalization, and chemical modification aimed at increasing their stabilities in aqueous environments, and finally, a summary of their applications The examples we will discuss, however, are only illustrative, and there is a significant body of additional findings emanating from our laboratory and others, especially in the realm of developing new synthetic strategies, tuning the framework stabilities, and exploring the guest inclusion and emergent properties of CD-MOFs We refer readers to the original communications, papers, and reviews cited herein We hope that, in the telling of the story of CD-MOFs, this Account may promote new scientific discoveries and further development of CD-MOF-based technologies in the future

83 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations