scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: The development of the [2]rotaxane switches through an iterative, evolutionary process is described and the arrangement reported here allows both memory and logic functions to use the same elements.
Abstract: Addressing an array of bistable [2]rotaxanes through a two-dimensional crossbar arrangement provides the device element of a current-driven molecular electronic circuit. The development of the [2]rotaxane switches through an iterative, evolutionary process is described. The arrangement reported here allows both memory and logic functions to use the same elements.

498 citations

Journal ArticleDOI
TL;DR: In this critical review, switching of the light-powered bistable rotaxanes and catenanes is discussed and the practical applications of some of these systems are highlighted.
Abstract: In this critical review, we discuss switching of the light-powered bistable rotaxanes and catenanes and highlight the practical applications of some of these systems. Photoactive molecular and supramolecular machines are comprised of two parts-1) a switching element, based on noncovalent interactions within the recognition units, which is responsible for executing mechanical movement, and 2) a light-harvesting unit which utilizes light to control the competitive interactions between the recognition sites. We also survey another class of molecular devices, namely molecular rotary motors--i.e., those that behave like their macroscopic counterparts--in which photochemically and thermally induced mechanical movement relies on isomerizations of a pivotal C=C bond, leading to a rotation of the top propeller part with respect to the stationary bottom part of the helical shaped chiral molecule. (146 references.).

491 citations

Journal ArticleDOI
TL;DR: Mesoporous silica nanoparticles modified by azobenzene derivatives, capable of storing small molecules and releasing them following light irradiation, have been fabricated and characterized.
Abstract: Mesoporous silica (MCM-41) nanoparticles modified by azobenzene derivatives, capable of storing small molecules and releasing them following light irradiation, have been fabricated and characterized. In the presence of the β-cyclodextrin and/or pyrene-modified β-cyclodextrin rings, the β-cyclodextrin and/or pyrene-modified β-cyclodextrin rings will thread onto the azobenzene-containing stalks and bind to trans-azobenzene units to form the pseudorotaxanes, thus sealing the nanopores and stopping release of the cargo. Upon irradiation, the isomerization of trans-to-cis azobenzene units leads to the dissociation of the β-cyclodextrin and/or pyrene-modified β-cyclodextrin rings from the stalks, thus opening the gates to the nanopores and releasing the cargo.

465 citations

Journal ArticleDOI
TL;DR: This critical review evaluates materials which comprise NPs functionalised with well-defined self-assembled monolayers of molecular and supramolecular switches, and discusses systems in which switching on the surfaces of NPs can be used to modulate reversibly a range of NP properties.
Abstract: Nanoparticles (NPs) and molecular/supramolecular switches have attracted considerable interest during the past decade on account of their unique properties and prominent roles in the fields of organic chemistry and materials science. Materials derived from the combination of these two components are now emerging in the literature. This critical review evaluates materials which comprise NPs functionalised with well-defined self-assembled monolayers of molecular and supramolecular switches. We draw attention to the fact that immobilisation of switches on NPs does not, in general, hamper their switching ability, although it can impart new properties on the supporting particles. This premise leads us to the discussion of systems in which switching on the surfaces of NPs can be used to modulate reversibly a range of NP properties—optical, fluorescent, electrical, magnetic—as well as the controlled release of small molecules. Finally, we discuss examples in which molecular switches direct reversible self-assembly of NPs (308 references).

464 citations

Journal ArticleDOI
TL;DR: This review serves to highlight the evolution of surface-functionalisation of SNPs with supermolecules and also with MIMs, the mechanisms through which controlled-release of cargo from mechanised SNPs occurs, and the results from the in vitro application of these mechanisation SNPs.
Abstract: Time and time again humanity is faced with a unifying global crisis that crosses the many great divides in different societies and serves to bring once segregated communities back together as a collective whole. This global community instinctively turns to science to develop the means of addressing its most pressing problems. More often than not, these forces dictate the direction that scientific research takes. This influence is no more apparent than in the field of supramolecular chemistry where, for decades now, its responsibility to tackle such issues has been put on the back burner as a consequence of a lack of platforms with which to deliver this contemporary brand of chemistry to meaningful applications. However, the tide is slowly turning as new materials emerge from the field of nanotechnology that are poised to host the many attractive attributes that are inherent in the chemistry of these supermolecules and also in the mechanostereochemistry of mechanically interlocked molecules (MIMs), which can be reused as a sequel to supramolecular chemistry. Mesoporous silica nanoparticles (SNPs) have proven to be supremely effective solid supports as their surfaces are easily functionalised with either supermolecules or MIMs. In turn, the blending of supramolecular chemistry and mechanostereochemistry with mesoporous SNPs has led to a new class of materials – namely, mechanised SNPs that are effectively biological nanoscale ‘bombs’ that have the potential to infiltrate cells and then, upon the pulling of a chemical trigger, explode! The development of these materials has been driven by the need to devise new therapies for the treatment of cancer. Recent progress in research promises not only to control the acuteness of this widespread and insidious disease, but also to make the harsh treatment less debilitating to patients. This global scourge is the unifying force that has brought together supramolecular chemistry, mechanostereochemistry and nanotechnology, uniting these three communities for the common good. At the nanoscale level, the mechanism for the release of cargos from the confines of the nanopores in the SNPs is accomplished by way of mechanical modifications made on the surface of these functionalised supports. These mechanical motions rely on both supramolecular, i.e., host–guest complexes, and mechanostereochemical phenomena (e.g., bistable rotaxanes), which are often stimulated by changes in pH, light and redox potentials, in addition to enzymatic catalysis. The future of this field lies in the development of ‘smart bombs’ wherein the loaded mechanised SNPs are endocytosed selectively by cancer cells, whereupon an intracellular trigger causes release of a cytotoxin, effectively leading to apoptosis. This review serves to highlight (1) the evolution of surface-functionalisation of SNPs with supermolecules and also with MIMs, (2) the mechanisms through which controlled-release of cargo from mechanised SNPs occurs, and (3) results from the in vitro application of these mechanised SNPs.

462 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations