scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: A bistable side-chain poly[2]catenane has been synthesized and found to form hierarchical self-assembled hollow superstructures of nanoscale dimensions in solution.
Abstract: Side-chain poly[2]catenanes at the click of a switch! A bistable side-chain poly[2]catenane has been synthesized and found to form hierarchical self-assembled hollow superstructures of nanoscale dimensions in solution. Molecular electromechanical switching (see picture) of the material is demonstrated, and the ground-state equilibrium thermodynamics and switching kinetics are examined as the initial steps towards processible molecular-based electronic devices and nanoelectromechanical systems.

61 citations

Journal ArticleDOI
TL;DR: A supramolecular entity based on a semi-dumbbell-shaped component containing asymmetrically substituted monopyrrolotetrathiafulvalene and 1,5-dioxynaphthalene recognition sites for encirclement by cyclobis and with a "speed bump" in the form of a thiomethyl group situated between the two recognition sites has been self-assembled.
Abstract: A [2]pseudorotaxane, based on a semi-dumbbell-shaped component containing asymmetrically substituted monopyrrolotetrathiafulvalene and 1,5-dioxynaphthalene recognition sites for encirclement by cyclobis(paraquat-p-phenylene) and with a "speed bump" in the form of a thiomethyl group situated between the two recognition sites, has been self-assembled. This supramolecular entity is a mixture in solution of two slowly interconverting [2]pseudorotaxanes, one of which is on the verge of being a [2]rotaxane at room temperature, allowing it to be isolated by employing flash column chromatography. These two [2]pseudorotaxanes were both characterized in solution by UV/Vis and 1 H NMR spectroscopies (1D and 2D) and also by differential pulse voltammetry. The spectroscopic and electrochemical data reveal that one of the complexes behaves wholly as a [2]pseudorotaxane, while the other has some [2]rotaxane character to it. The kinetics of the shuttling of cyclobis(paraquat-p-phenylene) between the monopyrrolotetrathiafulvalene and the 1,5-dioxynaphthalene recognition sites have been investigated at different temperatures. The shuttling processes, which are accompanied by detectable color changes, can be monitored using UV/Vis and 1 H NMR spectroscopies; the spectroscopic data have been employed in the determination of the rate constants, free energies of activation, enthalpies of activation, and the entropies of activation for the translation of cyclobis(paraquat-p-phenylene) between the two recognition sites.

61 citations

Journal ArticleDOI
TL;DR: This work describes research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project, aimed at understanding the function of bistable rotaxane molecular electronic switches.
Abstract: We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable [2]rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

61 citations

Journal ArticleDOI
TL;DR: A range of covalently linked donor-acceptor compounds which contain a hydroquinone unit, a 1,5-dioxynaphthalene ring system, or a tetrathiafulvalene unit as thepi-donor and cyclobis(paraquat-p-phenylene) (CBPQT(4+)) as the pi-accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines.
Abstract: A range of covalently linked donor-acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5-dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the pi-donor, and 4) cyclobis(paraquat-p-phenylene) (CBPQT(4+)) as the pi-accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The pi-donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self-complexing/decomplexing equilibria were shown to be highly temperature dependent when the pi-donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable-temperature (1)H NMR spectroscopy. The negative DeltaH degrees and DeltaS degrees values account for the fact that the "uncomplexed" conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor-acceptor interactions. The arm's in-and-out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self-complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF-containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self-complexing compounds could find applications as thermo- and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials.

60 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the BIPY(2+) unit can effectively employ to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.
Abstract: The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY^(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY^(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT^(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature ^(1)H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT^(4+) ring over the central BIPY2+ unit is in excess of 17 kcal mol^(−1) at 343 K. Further information about the nature of the BIPY^(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY^(2+) moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT^(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY^(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δequation image) of the CBPQT^(4+) for the case of the thread composed of a DNP flanked by two BIPY^(2+) units was found to be as high as 21.7 kcal mol^(−1) at room temperature. These results demonstrate that we can effectively employ the BIPY^(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT^(4+) ring in both mechanically interlocked and supramolecular systems.

60 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations